1
|
Benoit A, Lequeux A, Harter P, Berchem G, Janji B. Atypical chemokine receptor 2 expression is directly regulated by hypoxia inducible factor-1 alpha in cancer cells under hypoxia. Sci Rep 2024; 14:26589. [PMID: 39496762 PMCID: PMC11535233 DOI: 10.1038/s41598-024-77628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lack of significant and durable clinical benefit from anti-cancer immunotherapies is partly due to the failure of cytotoxic immune cells to infiltrate the tumor microenvironment. Immune infiltration is predominantly dependent on the chemokine network, which is regulated in part by chemokine and atypical chemokine receptors. We investigated the impact of hypoxia in the regulation of Atypical Chemokine Receptor 2 (ACKR2), which subsequently regulates major pro-inflammatory chemokines reported to drive cytotoxic immune cells into the tumor microenvironment. Our in silico analysis showed that both murine and human ACKR2 promoters contain hypoxia response element (HRE) motifs. Murine and human colorectal, melanoma, and breast cancer cells overexpressed ACKR2 under hypoxic conditions in a HIF-1α dependent manner; as such overexpression was abrogated in melanoma cells expressing non-functional deleted HIF-1α. We also showed that decreased expression of ACKR2 in HIF-1α-deleted cells under hypoxia was associated with increased CCL5 levels. Chromatin immunoprecipitation data confirmed that ACKR2 is directly regulated by HIF-1α at its promoter in B16-F10 melanoma cells. This study provides new key elements on how hypoxia can impair immune infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Audrey Lequeux
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Phillip Harter
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg, L- 1210, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, L- 1210, Luxembourg.
| |
Collapse
|
2
|
Dai D, Pei Y, Zhu B, Wang D, Pei S, Huang H, Zhu Q, Deng X, Ye J, Xu J, Chen X, Huang M, Xiao Y. Chemoradiotherapy-induced ACKR2 + tumor cells drive CD8 + T cell senescence and cervical cancer recurrence. Cell Rep Med 2024; 5:101550. [PMID: 38723624 PMCID: PMC11148771 DOI: 10.1016/j.xcrm.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Tumor recurrence after chemoradiotherapy is challenging to overcome, and approaches to predict the recurrence remain elusive. Here, human cervical cancer tissues before and after concurrent chemoradiotherapy (CCRT) analyzed by single-cell RNA sequencing reveal that CCRT specifically promotes CD8+ T cell senescence, driven by atypical chemokine receptor 2 (ACKR2)+ CCRT-resistant tumor cells. Mechanistically, ACKR2 expression is increased in response to CCRT and is also upregulated through the ligation of CC chemokines that are produced by activated myeloid and T cells. Subsequently, ACKR2+ tumor cells are induced to produce transforming growth factor β to drive CD8+ T cell senescence, thereby compromising antitumor immunity. Moreover, retrospective analysis reveals that ACKR2 expression and CD8+ T cell senescence are enhanced in patients with cervical cancer who experienced recurrence after CCRT, indicating poor prognosis. Overall, we identify a subpopulation of CCRT-resistant ACKR2+ tumor cells driving CD8+ T cell senescence and tumor recurrence and highlight the prognostic value of ACKR2 and CD8+ T cell senescence for chemoradiotherapy recurrence.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biqing Zhu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiang Chen
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Mingzhu Huang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Yichuan Xiao
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
3
|
Samus M, Rot A. Atypical chemokine receptors in cancer. Cytokine 2024; 176:156504. [PMID: 38266462 DOI: 10.1016/j.cyto.2024.156504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Atypical chemokine receptors (ACKRs) are a group of seven-transmembrane spanning serpentine receptors that are structurally homologous to classical G-protein-coupled receptors and bind cognate chemokines with high affinities but do not signal via G-proteins or mediate cell migration. However, ACKRs efficiently modify the availability and function of chemokines in defined microanatomical environments, can signal via intracellular effectors other than G-proteins, and play complex roles in physiology and disease, including in cancer. In this review, we summarize the findings on the diverse contributions of individual ACKRs to cancer development, progression, and tumor-host interactions. We discuss how changes in ACKR expression within tumor affect cancer growth, tumor vascularization, leukocyte infiltration, and metastasis formation, ultimately resulting in differential disease outcomes. Across many studies, ACKR3 expression was shown to support tumor growth and dissemination, whereas ACKR1, ACKR2, and ACKR4 in tumors were more likely to contribute to tumor suppression. With few notable exceptions, the insights on molecular and cellular mechanisms of ACKRs activities in cancer remain sparse, and the intricacies of their involvement are not fully appreciated. This is particularly true for ACKR1, ACKR2 and ACKR4. A better understanding of how ACKR expression and functions impact cancer should pave the way for their future targeting by new and effective therapies.
Collapse
Affiliation(s)
- Maryna Samus
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich 80336, Germany.
| |
Collapse
|
4
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Yang L, Zhang S, Pu P. Comprehensive analysis of ACKR family members in breast cancer using prognostic values. Oncol Lett 2023; 26:425. [PMID: 37664667 PMCID: PMC10472033 DOI: 10.3892/ol.2023.14011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Breast cancer (BC) is by far the most prevalent malignancy found in the female population. Atypical chemokine receptors (ACKRs) are a subclass of G-protein-coupled receptors, which are characterized by disrupted ligand binding and a breakdown of signaling following ligand binding. The evolution and function of multiple ACKRs in BC have yet to be fully elucidated, although certain findings on this family have been reported in several studies in Homo sapiens and other species. The present study identified that the expression level of ACKRs was significantly lower in breast carcinoma (BRCA) tissues compared with normal breast tissues through searches of the Tumor Immune Estimation Resource, UALCAN and Gene Expression Profiling Interactive Analysis databases. Additionally, when comparing BRCA tissues with normal breast tissues, it was found that there was obvious hypomethylation in the promoters of ACKR1, ACKR3 and ACKR5, as well as a marked hypermethylation in the promoters of ACKR2 and ACKR6. In determining the prognosis of patients with BRCA, the expression levels of ACKR1, ACKR2, ACKR3, ACKR4 and ACKR6 were all found to be important factors. The values for distant metastasis-free survival (DMFS), overall survival (OS) and recurrence-free survival (RFS) were all found to be lower in patients with BRCA who had a low expression level of ACKR1. In addition, the RFS rates for patients with BRCA were lower when the expression of ACKR2 was low, and worse values for DMFS, OS and RFS were found to be highly correlated with higher expression levels of ACKR3. Moreover, the DMFS, OS, RFS and predictive power score values were worse in those patients with low ACKR4 expression, and the RFS values for patients with BRCA were also found to be lower when the expression level of ACKR6 was low. Additionally, dendritic cells, macrophages, neutrophils, T cells with CD4+ status, T cells with CD8+ status and B cells were all substantially linked with ACKR expression, as well as immune cell infiltration. Taken together, the findings of the present study may offer a theoretical foundation for the creation of novel targets and prognostic indicators for BRCA therapy.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
6
|
Sozio F, Schioppa T, Laffranchi M, Salvi V, Tamassia N, Bianchetto-Aguilera FM, Tiberio L, Bonecchi R, Bosisio D, Parmentier M, Bottazzi B, Leone R, Russo E, Bernardini G, Garofalo S, Limatola C, Gismondi A, Sciumè G, Mantovani A, Del Prete A, Sozzani S. CCRL2 Expression by Specialized Lung Capillary Endothelial Cells Controls NK-cell Homing in Lung Cancer. Cancer Immunol Res 2023; 11:1280-1295. [PMID: 37343073 DOI: 10.1158/2326-6066.cir-22-0951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
Patterns of receptors for chemotactic factors regulate the homing of leukocytes to tissues. Here we report that the CCRL2/chemerin/CMKLR1 axis represents a selective pathway for the homing of natural killer (NK) cells to the lung. C-C motif chemokine receptor-like 2 (CCRL2) is a nonsignaling seven-transmembrane domain receptor able to control lung tumor growth. CCRL2 constitutive or conditional endothelial cell targeted ablation, or deletion of its ligand chemerin, were found to promote tumor progression in a Kras/p53Flox lung cancer cell model. This phenotype was dependent on the reduced recruitment of CD27- CD11b+ mature NK cells. Other chemotactic receptors identified in lung-infiltrating NK cells by single-cell RNA sequencing (scRNA-seq), such as Cxcr3, Cx3cr1, and S1pr5, were found to be dispensable in the regulation of NK-cell infiltration of the lung and lung tumor growth. scRNA-seq identified CCRL2 as the hallmark of general alveolar lung capillary endothelial cells. CCRL2 expression was epigenetically regulated in lung endothelium and it was upregulated by the demethylating agent 5-aza-2'-deoxycytidine (5-Aza). In vivo administration of low doses of 5-Aza induced CCRL2 upregulation, increased recruitment of NK cells, and reduced lung tumor growth. These results identify CCRL2 as an NK-cell lung homing molecule that has the potential to be exploited to promote NK cell-mediated lung immune surveillance.
Collapse
Affiliation(s)
- Francesca Sozio
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Italy
| | | | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Bonecchi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marc Parmentier
- WELBIO and I.R.I.B.H.M., Université Libre de Bruxelles, Brussels, Belgium
| | | | - Roberto Leone
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
7
|
Torphy RJ, Yee EJ, Schulick RD, Zhu Y. Atypical chemokine receptors: emerging therapeutic targets in cancer. Trends Pharmacol Sci 2022; 43:1085-1097. [PMID: 36307250 PMCID: PMC9669249 DOI: 10.1016/j.tips.2022.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Atypical chemokine receptors (ACKRs) regulate the availability of chemokines via chemokine scavenging, while also having the capacity to elicit downstream function through β-arrestin coupling. This contrasts with conventional chemokine receptors that directly elicit immune cell migration through G protein-coupled signaling. The significance of ACKRs in cancer biology has previously been poorly understood, but recent findings have highlighted the multifaceted role of these receptors in tumorigenesis and immune response modulation within the tumor microenvironment (TME). Additionally, recent research has expanded our understanding of the function of several receptors including GPR182, CCRL2, GPR1, PITPNM3, and C5aR2 that share similarities with the ACKR family. In this review, we discuss these recent developments, and highlight the opportunities and challenges of pharmacologically targeting ACKRs in cancer.
Collapse
Affiliation(s)
- Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
Yu T, Schuette F, Christofi M, Forrester JV, Graham GJ, Kuffova L. The atypical chemokine receptor-2 fine-tunes the immune response in herpes stromal keratitis. Front Immunol 2022; 13:1054260. [PMID: 36518752 PMCID: PMC9742518 DOI: 10.3389/fimmu.2022.1054260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes stromal keratitis (HSK) is a blinding corneal disease caused by herpes simplex virus-1 (HSV-1), a common pathogen infecting most of the world's population. Inflammation in HSK is chemokine-dependent, particularly CXCL10 and less so the CC chemokines. The atypical chemokine receptor-2 (ACKR2) is a decoy receptor predominantly for pro-inflammatory CC chemokines, which regulates the inflammatory response by scavenging inflammatory chemokines thereby modulating leukocyte infiltration. Deletion of ACKR2 exacerbates and delays the resolution of the inflammatory response in most models. ACKR2 also regulates lymphangiogenesis and mammary duct development through the recruitment of tissue-remodeling macrophages. Here, we demonstrate a dose-dependent upregulation of ACKR2 during corneal HSV-1 infection. At an HSV inoculum dose of 5.4 x 105 pfu, but not at higher dose, ACKR2 deficient mice showed prolonged clinical signs of HSK, increased infiltration of leukocytes and persistent corneal neovascularization. Viral clearance and T cell activation were similar in ACKR2-/- and wild type mice, despite a transient diminished expression of CD40 and CD86 in dendritic cells. The data suggest that ACKR2 fine-tunes the inflammatory response and the level of neovascularization in the HSK.
Collapse
Affiliation(s)
- Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Christofi
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John V. Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Perth, WA, Australia
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
9
|
Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Semin Cancer Biol 2022; 86:457-472. [PMID: 35124194 PMCID: PMC9744380 DOI: 10.1016/j.semcancer.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
Abstract
Chemokines are well equipped with chemo-attractive signals that can regulate cancer cell trafficking to specific organ sites. Currently, updated concepts have revealed the diverse role of chemokines in the biology of cancer initiation and progression. Genomic instabilities and alterations drive tumor heterogeneity, providing more options for the selection and metastatic progression to cancer cells. Tumor heterogeneity and acquired drug resistance are the main obstacles in managing cancer therapy and the primary root cause of metastasis. Studies emphasize that multiple chemokine/receptor axis are involved in cancer cell-mediated organ-specific distant metastasis. One of the persuasive mechanisms for heterogeneity and subsequent events is sturdily interlinked with the crosstalk between chemokines and their receptors on cancer cells and tissue-specific microenvironment. Among different metastatic niches, skeletal metastasis is frequently observed in the late stages of prostate, breast, and lung cancer and significantly reduces the survival of cancer patients. Therefore, it is crucial to elucidate the role of chemokines and their receptors in metastasis and bone remodeling. Here, we review the potential chemokine/receptor axis in tumorigenesis, tumor heterogeneity, metastasis, and vicious cycle in bone microenvironment.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F, Oveisee M, Jahanara A, Gholizadeh Navashenaq J. The Role of Atypical Chemokine Receptor D6 (ACKR2) in Physiological and Pathological Conditions; Friend, Foe, or Both? Front Immunol 2022; 13:861931. [PMID: 35677043 PMCID: PMC9168005 DOI: 10.3389/fimmu.2022.861931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chemokines exert crucial roles in inducing immune responses through ligation to their canonical receptors. Besides these receptors, there are other atypical chemokine receptors (ACKR1–4) that can bind to a wide range of chemokines and carry out various functions in the body. ACKR2, due to its ability to bind various CC chemokines, has attracted much attention during the past few years. ACKR2 has been shown to be expressed in different cells, including trophoblasts, myeloid cells, and especially lymphoid endothelial cells. In terms of molecular functions, ACKR2 scavenges various inflammatory chemokines and affects inflammatory microenvironments. In the period of pregnancy and fetal development, ACKR2 plays a pivotal role in maintaining the fetus from inflammatory reactions and inhibiting subsequent abortion. In adults, ACKR2 is thought to be a resolving agent in the body because it scavenges chemokines. This leads to the alleviation of inflammation in different situations, including cardiovascular diseases, autoimmune diseases, neurological disorders, and infections. In cancer, ACKR2 exerts conflicting roles, either tumor-promoting or tumor-suppressing. On the one hand, ACKR2 inhibits the recruitment of tumor-promoting cells and suppresses tumor-promoting inflammation to blockade inflammatory responses that are favorable for tumor growth. In contrast, scavenging chemokines in the tumor microenvironment might lead to disruption in NK cell recruitment to the tumor microenvironment. Other than its involvement in diseases, analyzing the expression of ACKR2 in body fluids and tissues can be used as a biomarker for diseases. In conclusion, this review study has tried to shed more light on the various effects of ACKR2 on different inflammatory conditions.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Oveisee
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Jahanara
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Jamshid Gholizadeh Navashenaq, ;
| |
Collapse
|
11
|
Sönmez C, Wölfer J, Holling M, Brokinkel B, Stummer W, Wiendl H, Thomas C, Schulte-Mecklenbeck A, Grauer OM. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci Rep 2022; 12:6769. [PMID: 35474089 PMCID: PMC9042843 DOI: 10.1038/s41598-022-10680-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) comprise a group of highly polymorphic inhibitory receptors which are specific for classical HLA class-I molecules. Peripheral blood and freshly prepared tumor cell suspensions (n = 60) as well as control samples (n = 32) were investigated for the distribution, phenotype, and functional relevance of CD158ab/KIR2DL1,-2/3 expressing NK-cells in glioblastoma (GBM) patients. We found that GBM were scarcely infiltrated by NK-cells that preferentially expressed CD158ab/KIR2DL1,-2/3 as inhibitory receptors, displayed reduced levels of the activating receptors CD335/NKp46, CD226/DNAM-1, CD159c/NKG2C, and showed diminished capacity to produce IFN-γ and perforin. Functional hypoactivity of GBM-derived NK-cells persisted despite IL-2 preactivation. Blockade with a specific KIR2DL-1,2/3 monoclonal antibody reversed NK-cell inhibition and significantly enhanced degranulation and IFN-γ production of IL-2 preactivated NK-cells in the presence of primary GBM cells and HLA-C expressing but not HLA class-I deficient K562 cells. Additional analysis revealed that significant amounts of IL-2 could be produced by tumor-derived CD4+ and CD8+CD45RA- memory T-cells after combined anti-CD3/anti-CD28 stimulation. Our data indicate that both blockade of inhibitory KIR and IL-2 triggering of tumor-derived NK-cells are necessary to enhance NK-cell responsiveness in GBM.
Collapse
Affiliation(s)
- Cüneyt Sönmez
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.,Department of Spine Surgery, Klinikum Herford, 32049, Herford, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.,Department of Neurosurgery and Spine Surgery, Hufeland Klinikum GmbH, 99974, Mühlhausen, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
12
|
Zhong X, Wang X, Sun Q. CCL2/ACKR2 interaction participate in breast cancer metastasis especially in patients with altered lipid metabolism. Med Hypotheses 2021; 158:110734. [PMID: 34861532 DOI: 10.1016/j.mehy.2021.110734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022]
Abstract
Breast cancer is the most prevalent cancer worldwide and metastasis accounts for the majority of associated deaths. Altered lipid metabolism has been proved to be involved with breast cancer, yet the underlying mechanism in lipid metabolism mediated metastasis in breast cancer remains inadequately understood. Evidence have indicated that adipocytes can produce chemokine ligand 2 (CCL2), and several studies have shown that tumor metastasis and patient survival is associated with atypical chemokine receptors/chemokine decoy receptors. We are interested in the factors that may influence cancer metastasis and patient prognosis, particularly in patients with altered lipid metabolism. In this paper, we propose a hypothesis that patients with increased expression levels of atypical chemokine receptor 2 (ACKR2) receptors will have less chance for tumor metastasis, whereas patients with decreased ACKR2 expression but high levels of chemokine receptor 2 positive (CCR2 + ) monocytes are more likely to develop metastasis and have worse outcomes. However, in patients with lower ACKR2 expression level but elevated level of CCR2 + NK cells, primary tumor can be suppressed and therefore present better outcomes.
Collapse
Affiliation(s)
- Xiaoying Zhong
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, China; Peking Union Medical College, MD Program, China
| | - Xuefei Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
13
|
Hao Q, Li J, Zhang Q, Xu F, Xie B, Lu H, Wu X, Zhou X. Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma. Clin Transl Med 2021; 11:e500. [PMID: 34459128 PMCID: PMC8335963 DOI: 10.1002/ctm2.500] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive histotype of epithelial ovarian cancer. The heterogeneity and molecular basis of this disease remain incompletely understood. METHODS To address this question, we have performed a single-cell transcriptomics analysis of matched primary and metastatic HGSOC samples. RESULTS A total of 13 571 cells are categorized into six distinct cell types, including epithelial cells, fibroblast cells, T cells, B cells, macrophages, and endothelial cells. A subset of aggressive epithelial cells with hyperproliferative and drug-resistant potentials is identified. Several new markers that are highly expressed in epithelial cells are characterized, and their roles in ovarian cancer cell growth and migration are further confirmed. Dysregulation of multiple signaling pathways, including the translational machinery, is associated with ovarian cancer metastasis through the trajectory analysis. Moreover, single-cell regulatory network inference and clustering (SCENIC) analysis reveals the gene regulatory networks and suggests the JUN signaling pathway as a potential therapeutic target for treatment of ovarian cancer, which is validated using the JUN/AP-1 inhibitor T-5224. Finally, our study depicts the epithelial-fibroblast cell communication atlas and identifies several important receptor-ligand complexes in ovarian cancer development. CONCLUSIONS This study uncovers new molecular features and the potential therapeutic target of HGSOC, which would advance the understanding and treatment of the disease.
Collapse
Affiliation(s)
- Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinghua Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bangxiang Xie
- Beijing YouAn Hospital, Capital Medical UniversityBeijing Institute of HepatologyBeijingChina
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer CenterTulane University School of MedicineNew OrleansLouisiana
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
14
|
Shang S, Li X, Gao Y, Guo S, Sun D, Zhou H, Sun Y, Wang P, Zhi H, Bai J, Ning S, Li X. MeImmS: Predict Clinical Benefit of Anti-PD-1/PD-L1 Treatments Based on DNA Methylation in Non-small Cell Lung Cancer. Front Genet 2021; 12:676449. [PMID: 34093667 PMCID: PMC8173132 DOI: 10.3389/fgene.2021.676449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy has become an effective therapy for cancer treatment. However, the development of biomarkers to predict immunotherapy response still remains a challenge. We have developed the DNA Methylation Immune Score, named “MeImmS,” which can predict clinical benefits of non-small cell lung cancer (NSCLC) patients based on DNA methylation of 8 CpG sites. The 8 CpG sites regulate the expression of immune-related genes and MeImmS was related to immune-associated pathways, exhausted T cell markers and immune cells. Copy-number loss in 1p36.33 may affect the response of cancer patients to immunotherapy. In addition, SAA1, CXCL10, CCR5, CCL19, CXCL11, CXCL13, and CCL5 were found to be key immune regulatory genes in immunotherapy. Together, MeImmS discovered the heterogeneous of NSCLC patients and guided the immunotherapy of cancer patients in the future.
Collapse
Affiliation(s)
- Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dailin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor ACKR2/D6. Cancers (Basel) 2021; 13:cancers13051054. [PMID: 33801414 PMCID: PMC7958614 DOI: 10.3390/cancers13051054] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The atypical chemokine receptor ACKR2 plays an important role in the tumour microenvironment. It has long been considered as a scavenger of inflammatory chemokines exclusively from the CC family. In this study, we identified the CXC chemokine CXCL10 as a new strong agonist ligand for ACKR2. CXCL10 is known to drive the infiltration of immune cells into the tumour bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2 acts as a scavenger reducing the availability of CXCL10 for CXCR3. Our study sheds new light on the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2 in tumour immunology. Abstract Atypical chemokine receptors (ACKRs) are important regulators of chemokine functions. Among them, the atypical chemokine receptor ACKR2 (also known as D6) has long been considered as a scavenger of inflammatory chemokines exclusively from the CC family. In this study, by using highly sensitive β-arrestin recruitment assays based on NanoBiT and NanoBRET technologies, we identified the inflammatory CXC chemokine CXCL10 as a new strong agonist ligand for ACKR2. CXCL10 is known to play an important role in the infiltration of immune cells into the tumour bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2 is able to internalize and reduce the availability of CXCL10 in the extracellular space. Moreover, we found that, in contrast to CC chemokines, CXCL10 activity towards ACKR2 was drastically reduced by the dipeptidyl peptidase 4 (DPP4 or CD26) N-terminal processing, pointing to a different receptor binding pocket occupancy by CC and CXC chemokines. Overall, our study sheds new light on the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2 in many physiological and pathological processes, including tumour immunology. Our data also testify that systematic reassessment of chemokine-receptor pairing is critically needed as important interactions may remain unexplored.
Collapse
|
16
|
Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discov 2020; 11:34-44. [PMID: 33277307 DOI: 10.1158/2159-8290.cd-20-0655] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Because of their potent antitumor activity and their proinflammatory role, natural killer (NK) cells are at the forefront of efforts to develop immuno-oncologic treatments. NK cells participate in immune responses to tumors by killing target cells and producing cytokines. However, in the immunosuppressive tumor microenvironment, NK cells become dysfunctional through exposure to inhibitory molecules produced by cancer cells, leading to tumor escape. We provide an overview of what is known about NK tumor infiltration and surveillance and about the mechanisms by which NK cells become dysfunctional. SIGNIFICANCE: The functions of tumor-infiltrating NK cells may be impaired. This review aims to describe the various mechanisms by which tumors alter NK-cell functions.
Collapse
Affiliation(s)
- Beatriz Cózar
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Marco Greppi
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.,Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | | | | - Laura Chiossone
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France. .,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Service d'Immunologie, Marseille-Immunopôle, Marseille, France
| |
Collapse
|
17
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
18
|
Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2. Vaccines (Basel) 2020; 8:vaccines8030542. [PMID: 32957704 PMCID: PMC7565953 DOI: 10.3390/vaccines8030542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the β-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a β-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.
Collapse
|
19
|
Wilson GJ, Fukuoka A, Love SR, Kim J, Pingen M, Hayes AJ, Graham GJ. Chemokine receptors coordinately regulate macrophage dynamics and mammary gland development. Development 2020; 147:dev187815. [PMID: 32467242 PMCID: PMC7328164 DOI: 10.1242/dev.187815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022]
Abstract
Macrophages are key regulators of developmental processes, including those involved in mammary gland development. We have previously demonstrated that the atypical chemokine receptor ACKR2 contributes to the control of ductal epithelial branching in the developing mammary gland by regulating macrophage dynamics. ACKR2 is a chemokine-scavenging receptor that mediates its effects through collaboration with inflammatory chemokine receptors (iCCRs). Here, we reveal reciprocal regulation of branching morphogenesis in the mammary gland, whereby stromal ACKR2 modulates levels of the shared ligand CCL7 to control the movement of a key population of CCR1-expressing macrophages to the ductal epithelium. In addition, oestrogen, which is essential for ductal elongation during puberty, upregulates CCR1 expression on macrophages. The age at which girls develop breasts is decreasing, which raises the risk of diseases including breast cancer. This study presents a previously unknown mechanism controlling the rate of mammary gland development during puberty and highlights potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Chemokine CCL3/deficiency
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Chemokine CCL5/deficiency
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Epithelium/metabolism
- Estradiol/pharmacology
- Female
- Lectins, C-Type/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Receptors, CCR1/deficiency
- Receptors, CCR1/genetics
- Receptors, CCR1/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Ayumi Fukuoka
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Samantha R Love
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Jiwon Kim
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Marieke Pingen
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Alan J Hayes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
20
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
22
|
Liu H, Yang Z, Lu W, Chen Z, Chen L, Han S, Wu X, Cai T, Cai Y. Chemokines and chemokine receptors: A new strategy for breast cancer therapy. Cancer Med 2020; 9:3786-3799. [PMID: 32253815 PMCID: PMC7286460 DOI: 10.1002/cam4.3014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokines and chemokine receptors not only participate in the development of tissue differentiation, hematopoiesis, inflammation, and immune regulation but also play an important role in the process of tumor development. The role of chemokines and chemokine receptors in tumors has been emphasized in recent years. More and more studies have shown that chemokines and chemokine receptors are closely related to the occurrence, angiogenesis, metastasis, drug resistance, and immunity of breast cancer. Here, we review recent progression on the roles of chemokines and chemokine receptors in breast cancer, and discuss the possible mechanism in breast cancer that might facilitate the development of new therapies by targeting chemokines as well as chemokine receptors. Chemokines and chemokine receptors play an important role in the occurrence and development of breast cancer. In-depth study of chemokines and chemokine receptors can provide intervention targets for breast cancer biotherapy. The regulation of chemokines and chemokine receptors may become a new strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenping Lu
- Guangan' Men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, China.,Cancer Research Institute of Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Hansell CAH, Love S, Pingen M, Wilson GJ, MacLeod M, Graham GJ. Analysis of lung stromal expression of the atypical chemokine receptor ACKR2 reveals unanticipated expression in murine blood endothelial cells. Eur J Immunol 2020; 50:666-675. [PMID: 32114694 PMCID: PMC8638673 DOI: 10.1002/eji.201948374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
Analysis of chemokine receptor, and atypical chemokine receptor, expression is frequently hampered by the lack of availability of high‐quality antibodies and the species specificity of those that are available. We have previously described methodology utilizing Alexa‐Fluor‐labeled chemokine ligands as versatile reagents to detect receptor expression. Previously this has been limited to hematopoietic cells and methodology for assessing expression of receptors on stromal cells has been lacking. Among chemokine receptors, the ones most frequently expressed on stromal cells belong to the atypical chemokine receptor subfamily. These receptors do not signal in the classic sense in response to ligand but scavenge their ligands and degrade them and thus sculpt in vivo chemokine gradients. Here, we demonstrate the ability to use either intratracheal or intravenous, Alexa‐Fluor‐labeled chemokine administration to detect stromal cell populations expressing the atypical chemokine receptor ACKR2. Using this methodology, we demonstrate, for the first time, expression of ACKR2 on blood endothelial cells. This observation sets the lung aside from other tissues in which ACKR2 is exclusively expressed on lymphatic endothelial cells and suggest unique roles for ACKR2 in the pulmonary environment.
Collapse
Affiliation(s)
- Christopher A H Hansell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Samantha Love
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Marieke Pingen
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Megan MacLeod
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
24
|
Sjöberg E, Meyrath M, Chevigné A, Östman A, Augsten M, Szpakowska M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv Cancer Res 2020; 145:99-138. [PMID: 32089166 DOI: 10.1016/bs.acr.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemokines regulate directed cell migration, proliferation and survival and are key components in cancer biology. They exert their functions by interacting with seven-transmembrane domain receptors that signal through G proteins (GPCRs). A subgroup of four chemokine receptors known as the atypical chemokine receptors (ACKRs) has emerged as essential regulators of the chemokine functions. ACKRs play diverse and complex roles in tumor biology from tumor initiation to metastasis, including cancer cell proliferation, adherence to endothelium, epithelial-mesenchymal transition (EMT), extravasation from blood vessels, tumor-associated angiogenesis or protection from immunological responses. This chapter gives an overview on the established and emerging roles that the atypical chemokine receptors ACKR1, ACKR2, ACKR3 and ACKR4 play in the different phases of cancer development and dissemination, their clinical relevance, as well as on the hurdles to overcome in ACKRs targeting as cancer therapy.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Max Meyrath
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
25
|
Zhang Q, Zhou N, Wang W, Zhou S. A Novel Autocrine CXCL14/ACKR2 Axis: The Achilles' Heel of Cancer Metastasis? Clin Cancer Res 2019; 25:3476-3478. [PMID: 30952637 DOI: 10.1158/1078-0432.ccr-19-0853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P.R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China.
| |
Collapse
|
26
|
Targeting immune cells for cancer therapy. Redox Biol 2019; 25:101174. [PMID: 30917934 PMCID: PMC6859550 DOI: 10.1016/j.redox.2019.101174] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
Recent years have seen a renaissance in the research linking inflammation and cancer with immune cells playing a central role in smouldering inflammation in the tumor microenvironment. Diverse immune cell types infiltrate the tumor microenvironment, and the dynamic tumor-immune cell interplay gives rise to a rich milieu of cytokines and growth factors. Fundamentally, this intricate cross-talk creates the conducive condition for tumor cell proliferation, survival and metastasis. Interestingly, the prominent impact of immune cells is expounded in their contrary pro-tumoral role, as well as their potential anti-cancer cellular weaponry. The latter is known as immunotherapy, a concept born out of evidence that tumors are susceptible to immune defence and that by manipulating the immune system, tumor growth can be successfully restrained. Naturally, a deeper understanding of the multifaceted roles of various immune cell types thus contributes toward developing innovative anti-cancer strategies. Therefore, in this review we first outline the roles played by the major immune cell types, such as macrophages, neutrophils, natural killer cells, T cells and B cells. We then explain the recently-explored strategies of immunomodulation and discuss some important approaches via an immunology perspective.
Collapse
|
27
|
Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front Immunol 2019; 10:379. [PMID: 30894861 PMCID: PMC6414456 DOI: 10.3389/fimmu.2019.00379] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a clinically validated treatment for many cancers to boost the immune system against tumor growth and dissemination. Several strategies are used to harness immune cells: monoclonal antibodies against tumor antigens, immune checkpoint inhibitors, vaccination, adoptive cell therapies (e.g., CAR-T cells) and cytokine administration. In the last decades, it is emerging that the chemokine system represents a potential target for immunotherapy. Chemokines, a large family of cytokines with chemotactic activity, and their cognate receptors are expressed by both cancer and stromal cells. Their altered expression in malignancies dictates leukocyte recruitment and activation, angiogenesis, cancer cell proliferation, and metastasis in all the stages of the disease. Here, we review first attempts to inhibit the chemokine system in cancer as a monotherapy or in combination with canonical or immuno-mediated therapies. We also provide recent findings about the role in cancer of atypical chemokine receptors that could become future targets for immunotherapy.
Collapse
Affiliation(s)
- Valeria Mollica Poeta
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Arianna Capucetti
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
28
|
Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int J Mol Sci 2018; 20:ijms20010096. [PMID: 30591657 PMCID: PMC6337330 DOI: 10.3390/ijms20010096] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022] Open
Abstract
Metastasis still represents the primary cause of cancer morbidity and mortality worldwide. Chemokine signalling contributes to the overall process of cancer growth and metastasis, and their expression in both primary tumors and metastatic lesions correlate with prognosis. Chemokines promote tumor metastasization by directly supporting cancer cell survival and invasion, angiogenesis, and by indirectly shaping the pre-metastatic niches and antitumor immunity. Here, we will focus on the relevant chemokine/chemokine receptor axes that have been described to drive the metastatic process. We elaborate on their role in the regulation of tumor angiogenesis and immune cell recruitment at both the primary tumor lesions and the pre-metastatic foci. Furthermore, we also discuss the advantages and limits of current pharmacological strategies developed to target chemokine networks for cancer therapy.
Collapse
|