1
|
Huynh T, Rodriguez-Rodriguez S, Danilov AV. Bruton Tyrosine Kinase Degraders in B-Cell Malignancies. Mol Cancer Ther 2024; 23:619-626. [PMID: 38693903 DOI: 10.1158/1535-7163.mct-23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 05/03/2024]
Affiliation(s)
- Tiana Huynh
- City of Hope National Medical Center, Duarte, California
| | | | | |
Collapse
|
2
|
Jin Z, Xiang R, Qing K, Li D, Liu Z, Li X, Zhu H, Zhang Y, Wang L, Xue K, Liu H, Xu Z, Wang Y, Li J. Lenalidomide overcomes the resistance to third-generation CD19-CAR-T cell therapy in preclinical models of diffuse large B-cell lymphoma. Cell Oncol (Dordr) 2023; 46:1143-1157. [PMID: 37219767 DOI: 10.1007/s13402-023-00833-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells against CD19 have been proven to be effective in treating B-cell hematological malignancies. However, the efficacy of this promising therapy is limited by many factors. METHODS In this study, the germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) cell line OCI-Ly1, and patient-derived xenografted (PDX) mice (CY-DLBCL) were used as the CAR-T cell-resistant model. Meanwhile, the activated B-cell-like (ABC) DLBCL cell line OCI-Ly3 and PDX mice (ZML-DLBCL) were defined as the CAR-T sensitive model. The enhancement of CAR-T cell function by lenalidomide (LEN) was examined in vitro and in vivo. RESULTS Lenalidomide effectively enhanced the function of third-generation CD19-CAR-T cells by polarizing CD8+ CAR-T cells to CD8 early-differentiated stage and Th1 type, reducing CAR-T cell exhaustion and improving cell expansion. It was further demonstrated that CAR-T cells combined with LEN substantially reduce the tumor burden and prolong the survival time in various DLBCL mouse models. LEN was also found to promote the infiltration of CD19-CAR-T cells into the tumor site by modulating the tumor microenvironment. CONCLUSION In summary, the results of the present study suggest that LEN can improve the function of CD19-CAR-T cells, providing a basis for clinical trials using this combination therapy against DLBCL.
Collapse
Affiliation(s)
- Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of General Practice, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Bekić M, Vasiljević M, Stojanović D, Kokol V, Mihajlović D, Vučević D, Uskoković P, Čolić M, Tomić S. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor. Int J Nanomedicine 2022; 17:3191-3216. [PMID: 35909813 PMCID: PMC9329576 DOI: 10.2147/ijn.s362038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phosphonates, like 3-AminoPropylphosphonic Acid (ApA), possess a great potential for the therapy of bone tumours, and their delivery via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of CNC-phosphonates have not been investigated thoroughly. The main aim was to examine how the modification of CNCs with phosphonate affects their immunomodulatory properties in human cells. Methods Wood-based native (n) CNCs were modified via oxidation (ox-CNCs) and subsequent conjugation with ApA (ApA-CNCs). CNCs were characterised by atomic force microscopy (AFM) and nanoindentation. Cytotoxicity and immunomodulatory potential of CNCs were investigated in cultures of human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs)/T cells co-cultures by monitoring phenotype, cytokines production, allostimulatory and Th/Treg polarisation capacity. Results AFM showed an increase in CNCs' thickens, elasticity modulus and hardness during the modification with ApA. When applied at non-toxic doses, nCNCs showed a tolerogenic potential upon internalisation by MoDCs, as judged by their increased capacity to up-regulate tolerogenic markers and induce regulatory T cells (Treg), especially when present during the differentiation of MoDCs. In contrast, ox- and ApA-CNCs induced oxidative stress and autophagy in MoDCs, which correlated with their stimulatory effect on the maturation of MoDCs, but also inhibition of MoDCs differentiation. ApA-CNC-treated MoDCs displayed the highest allostimulatory and Th1/CTL polarising activity in co-cultures with T cells. These effects of ApA-CNCs were mediated via GABA-B receptor-induced lowering of cAMP levels in MoDCs, and they could be blocked by GABA-B receptor inhibitor. Moreover, the Th1 polarising and allostimulatory capacity of MoDCs differentiated with ApA-CNC were largely preserved upon the maturation of MoDCs, whereas nCNC- and ox-CNC-differentiated MoDCs displayed an increased tolerogenic potential. Conclusion The delivery of ApA via CNCs induces potent DC-mediated Th1 polarisation, which could be beneficial in their potential application in tumour therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dušica Stojanović
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Vanja Kokol
- Department of Textile Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Petar Uskoković
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Geng CL, Chen JY, Song TY, Jung JH, Long M, Song MF, Ji T, Min BS, Lee JG, Peng B, Pu YS, Fan HJ, Hao P, Zhou Q, Shin EC, Cang Y. Lenalidomide bypasses CD28 co-stimulation to reinstate PD-1 immunotherapy by activating Notch signaling. Cell Chem Biol 2022; 29:1260-1272.e8. [PMID: 35732177 DOI: 10.1016/j.chembiol.2022.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Programmed cell death protein 1 (PD-1) checkpoint blockade therapy requires the CD28 co-stimulatory receptor for CD8+ T cell expansion and cytotoxicity. However, CD28 expression is frequently lost in exhausted T cells and during immune senescence, limiting the clinical benefits of PD-1 immunotherapy in individuals with cancer. Here, using a cereblon knockin mouse model that regains in vivo T cell response to lenalidomide, an immunomodulatory imide drug, we show that lenalidomide reinstates the anti-tumor activity of CD28-deficient CD8+ T cells after PD-1 blockade. Lenalidomide redirects the CRL4Crbn ubiquitin ligase to degrade Ikzf1 and Ikzf3 in T cells and unleashes paracrine interleukin-2 (IL-2) and intracellular Notch signaling, which collectively bypass the CD28 requirement for activation of intratumoral CD8+ T cells and inhibition of tumor growth by PD-1 blockade. Our results suggest that PD-1 immunotherapy can benefit from a lenalidomide combination when treating solid tumors infiltrated with abundant CD28- T cells.
Collapse
Affiliation(s)
- Chen-Lu Geng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jun-Yi Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian-Yu Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Long
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Min-Fang Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Peng
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yi-Sheng Pu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hong-Jie Fan
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
6
|
Alcantara M, Fuentealba J, Soussain C. Emerging Landscape of Immunotherapy for Primary Central Nervous System Lymphoma. Cancers (Basel) 2021; 13:cancers13205061. [PMID: 34680209 PMCID: PMC8534133 DOI: 10.3390/cancers13205061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Primary central nervous system lymphoma (PCNSL) is characterized by its location in the central nervous system comprising the brain, the eye, the cerebrospinal fluid and the spinal cord and a poor prognosis with the current chemotherapies. Immunotherapies represent a new paradigm in the care of patients with B-cell lymphoma, but, till recently, immunotherapies studies excluded patients with PCNSL because of the lack of knowledge on the immune network in the brain. Recent studies shed a new light on the origin and characteristics of the CNS immune cells. We review the current experimental preclinical and clinical developments of immunotherapies in CNS lymphoma as well as the effects of targeted therapies on the brain microenvironment. We provide perspectives for improving the efficacy of immunotherapies in the specific setting of PCNSL for a better prognosis of this disease. Abstract Primary central nervous system lymphoma (PCNSL) is, mainly, a diffuse large B-cell lymphoma (DLBCL) with a non-germinal center B-cell (non-GCB) origin. It is associated with a poor prognosis and an unmet medical need. Immunotherapy has emerged as one of the most promising areas of research and is now part of the standard treatment for many solid and hematologic tumors. This new class of therapy generated great enthusiasm for the treatment of relapsed/refractory PCNSL. Here, we discuss the challenges of immunotherapy for PCNSL represented by the lymphoma cell itself and the specific immune brain microenvironment. We review the current clinical development from the anti-CD20 monoclonal antibody to CAR-T cells, as well as immune checkpoint inhibitors and targeted therapies with off-tumor effects on the brain microenvironment. Perspectives for improving the efficacy of immunotherapies and optimizing their therapeutic role in PCNSL are suggested.
Collapse
Affiliation(s)
- Marion Alcantara
- Center for Cancer Immunotherapy, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France; (M.A.); (J.F.)
- Clinical Hematology Unit, Institut Curie, 92210 Saint-Cloud, France
| | - Jaime Fuentealba
- Center for Cancer Immunotherapy, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France; (M.A.); (J.F.)
| | - Carole Soussain
- Center for Cancer Immunotherapy, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France; (M.A.); (J.F.)
- Clinical Hematology Unit, Institut Curie, 92210 Saint-Cloud, France
- Correspondence:
| |
Collapse
|
7
|
Tuscano JM, Poh C, Kaesberg P, Luxardi G, Merleev A, Marusina A, Brunson A, Rosenberg A, Jonas B, Maverakis E. Long-term Follow-up and Correlative Analysis of Two Phase II Trials of Rituximab and Lenalidomide Followed by Continuous Lenalidomide in Untreated and Relapsed/Refractory Indolent Lymphoma. Clin Cancer Res 2021; 27:4726-4736. [PMID: 34088724 PMCID: PMC9262142 DOI: 10.1158/1078-0432.ccr-20-4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Rituximab and lenalidomide are effective for previously untreated and relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). However, long-term survival and predictive biomarkers are not well described. PATIENTS AND METHODS We conducted two phase II open-label trials involving 60 patients with previously untreated and R/R advanced-stage iNHL. Patients received lenalidomide and rituximab induction followed by continuous lenalidomide until disease progression or unacceptable toxicity. The primary endpoint was overall response rate (ORR). Correlative studies included plasma cytokine monitoring, flow cytometry of peripheral blood mononuclear cells (PBMC; days 0, 15, 30, and 60), and RNA sequencing (RNA-seq) of pretreatment tumor biopsies. RESULTS At a median follow-up of 63 months for previously untreated and 100 months for R/R, ORR was 82% for both. The 11 R/R patients who achieved complete remission remained in continuous remission for 16 to 141 months, thereafter. Median overall survival (OS) was not reached in the previously untreated and was 140 months (95% confidence interval, 53.4-140) in the R/R group. A mixed-effects linear regression model identified significant associations between Granzyme B+ (GranB+) CD8+ T cells and long-term complete response (LTCR; P = 5.3e-4). Furthermore, prior to start of therapy, treatment response could be predicted by B-cell and GranB+ CD8+ T-cell levels (% total lymphocytes). CONCLUSIONS Rituximab plus lenalidomide followed by continuous lenalidomide is effective with manageable toxicity in patients with previously untreated and R/R iNHL. This regimen produces durable remissions, even in heavily pretreated patients, with some lasting greater than 10 years. GranB+ CD8+ T cells, B cells, and plasma IFNγ allowed prediction of LTCR but need validation in larger trials.
Collapse
Affiliation(s)
- Joseph M. Tuscano
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,Veterans Administration Northern California Healthcare System, Sacramento, CA, USA
| | - Christina Poh
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,University of Washington, Division of Medical Oncology, Seattle, WA USA
| | - Paul Kaesberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Guillaume Luxardi
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alexander Merleev
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alina Marusina
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Ann Brunson
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Aaron Rosenberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Brian Jonas
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Emanual Maverakis
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| |
Collapse
|
8
|
Svanberg R, Janum S, Patten PEM, Ramsay AG, Niemann CU. Targeting the tumor microenvironment in chronic lymphocytic leukemia. Haematologica 2021; 106:2312-2324. [PMID: 33882636 PMCID: PMC8409023 DOI: 10.3324/haematol.2020.268037] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development, growth, and survival of the malignant B-cell clone in chronic lymphocytic leukemia (CLL). Within the proliferation niches of lymph nodes, bone marrow, and secondary lymphoid organs, a variety of phenotypically and functionally altered cell types, including T cells, natural killer cells, monocytes/macrophages, endothelial and mesenchymal stroma cells, provide crucial survival signals, along with CLL-cellinduced suppression of antitumor immune responses. The B-cell receptor pathway plays a pivotal role in mediating the interaction between CLL cells and the TME. However, an increasing number of additional components of the multifactorial TME are being discovered. Although the majority of therapeutic strategies employed in CLL hitherto have focused on targeting the leukemic cells, emerging evidence implies that modulation of microenvironmental cells and CLL-TME interactions by novel therapeutic agents significantly affect their clinical efficacy. Thus, improving our understanding of CLL-TME interactions and how they are affected by current therapeutic agents may improve and guide treatment strategies. Identification of novel TME interactions may also pave the road for the development of novel therapeutic strategies targeting the TME. In this review, we summarize current evidence on the effects of therapeutic agents on cells and interactions within the TME. With a growing demand for improved and personalized treatment options in CLL, this review aims at inspiring future exploration of smart drug combination strategies, translational studies, and novel therapeutic targets in clinical trials.
Collapse
Affiliation(s)
| | - Sine Janum
- Department of Clinical Haemato-oncology, Bartholomew's Hospital, Barts Health Trust, London
| | - Piers E M Patten
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London
| | | |
Collapse
|
9
|
Ioannou N, Jain K, Ramsay AG. Immunomodulatory Drugs for the Treatment of B Cell Malignancies. Int J Mol Sci 2021; 22:8572. [PMID: 34445275 PMCID: PMC8395307 DOI: 10.3390/ijms22168572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence suggests that the tumor microenvironment (TME) is involved in disease progression and drug resistance in B cell malignancies, by supporting tumor growth and facilitating the ability of malignant cells to avoid immune recognition. Immunomodulatory drugs (IMiDs) such as lenalidomide have some direct anti-tumor activity, but critically also target various cellular compartments of the TME including T cells, NK cells, and stromal cells, which interfere with pro-tumor signaling while activating anti-tumor immune responses. Lenalidomide has delivered favorable clinical outcomes as a single-agent, and in combination therapy leads to durable responses in chronic lymphocytic leukemia (CLL) and several non-Hodgkin lymphomas (NHLs) including follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Recently, avadomide, a next generation cereblon E3 ligase modulator (CELMoD), has shown potent anti-tumor and TME immunomodulatory effects, as well as promising clinical efficacy in DLBCL. This review describes how the pleiotropic effects of IMiDs and CELMoDs could make them excellent candidates for combination therapy in the immuno-oncology era-a concept supported by preclinical data, as well as the recent approval of lenalidomide in combination with rituximab for the treatment of relapsed/refractory (R/R) FL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/immunology
- Antineoplastic Agents/therapeutic use
- Enzyme Inhibitors/therapeutic use
- Humans
- Immunologic Factors/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/immunology
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/immunology
Collapse
Affiliation(s)
| | | | - Alan G. Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK; (N.I.); (K.J.)
| |
Collapse
|
10
|
Pang N, Alimu X, Chen R, Muhashi M, Ma J, Chen G, Zhao F, Wang L, Qu J, Ding J. Activated Galectin-9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia. FASEB J 2021; 35:e21556. [PMID: 34137463 DOI: 10.1096/fj.202100013r] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Tim-3 is a negative immunoregulator in anti-tumor response, but its mechanism in chronic lymphocytic leukemia (CLL) is not yet clear. The aim of this study was to understand the role of Galectin-9/Tim-3 signaling pathway in the regulation of CD4+ T cell subsets in CLL patients. Flow cytometry results showed that the number of Treg cells obviously increased, and there was a significant Treg/Th17 imbalance in CLL patients. In addition, Tim-3 overexpressed on the surface of Th1 and Treg cells in CLL patients. The levels of Galectin-9 and IL-10 were significantly elevated in patients of CLL, especially in stages of Binet B, and C. However, IFN-γ decreased. Moreover, Galectin-9 in CLL patients was positively correlated with the number of Tim-3+ Treg cells and the level of IL-10. Interestingly, when the Tim-3/Galectin-9 pathway was blocked in vitro, the level of IL-10 in the culture supernatant of CD4+ T was significantly reduced, while the levels of IFN-γ and TNF-α were increased. After co-culture with activated Th1 cells, the apoptosis of CLL cells was significantly increased, and this effect was reversed after treatment with Tim-3+ Tregs. In summary, Galectin-9/Tim-3 are elevated in CLL and associated with disease progression. By the negative regulation of CD4+ T cells, activated Galectin-9/Tim-3 suppresses Th1 effector function and also promotes Treg to be involved in immune escape of CLL. This pathway might become the potential target of immunotherapy in CLL patients.
Collapse
MESH Headings
- Aged
- Case-Control Studies
- Female
- Galectins/genetics
- Galectins/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Male
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Nannan Pang
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xierenguli Alimu
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Rong Chen
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Maliya Muhashi
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jiajia Ma
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Gang Chen
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fang Zhao
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Wang
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianhua Qu
- Center of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Hematology Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianbing Ding
- Basic Medical College of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Lenalidomide triggers T-cell effector functions in vivo in patients with follicular lymphoma. Blood Adv 2021; 5:2063-2074. [PMID: 33877296 DOI: 10.1182/bloodadvances.2020003774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The immunomodulatory drug lenalidomide is used in patients with follicular lymphoma (FL) with the aim of stimulating T-cell antitumor immune response. However, little is known about the effects of lenalidomide on T-cell biology in vivo in patients with FL. We thus undertook an extensive longitudinal immunologic study, including phenotypic, transcriptomic, and functional analyses, on 44 first-line and 27 relapsed/refractory patients enrolled in the GALEN trial (Obinutuzumab Combined With Lenalidomide for Relapsed or Refractory Follicular B-Cell Lymphoma) to test the efficacy of lenalidomide and obinutuzumab combination in patients with FL. Lenalidomide rapidly and transiently induced an activated T-cell phenotype, including HLA-DR, Tim-3, CD137, and programmed cell death protein 1 (PD-1) upregulation. Furthermore, sequential RNA-sequencing of sorted PD-1+ and PD-1- T-cell subsets revealed that lenalidomide triggered a strong enrichment for several gene signatures related to effector memory T-cell features, including proliferation, antigen receptor signaling, and immune synapse restoration; all were validated at the phenotypic level and with ex vivo functional assays. Correlative analyses pinpointed a negative clinical impact of high effector T-cell and regulatory T-cell percentages before and during treatment. Our findings bring new insight in lenalidomide mechanisms of action at work in vivo and will fuel a new rationale for the design of combination therapies.
Collapse
|
12
|
Sun C, Wiestner A. Can Immunocompetence Be Restored in Chronic Lymphocytic Leukemia? Hematol Oncol Clin North Am 2021; 35:827-845. [PMID: 34174988 DOI: 10.1016/j.hoc.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reversing or preventing immunodeficiency in patients with chronic lymphocytic leukemia (CLL) is of the highest priority. The past decade of research has met the challenge of treating CLL for most patients. Patients continue to struggle, however, with infections and second primary malignancies related to immunodeficiency. Strategies addressing this need currently are limited to vaccinations, with suboptimal efficacy, and immunoglobulin replacement. Correlative studies have provided insights into immunologic alterations on treatment. Understanding vulnerabilities in the immune system may help identify potential interventions to boost immunity. An emphasis on systematically testing such interventions is required to restore immunocompetence in patients with CLL.
Collapse
Affiliation(s)
- Clare Sun
- Hematology Branch, NHLBI, NIH, Building 10-CRC, Room 3-5132, 10 Center Drive, Bethesda, MD 20892-0004, USA.
| | - Adrian Wiestner
- Hematology Branch, NHLBI, NIH, Building 10-CRC, Room 3-5140, 10 Center Drive, Bethesda, MD 20892-0004, USA
| |
Collapse
|
13
|
Baptista MJ, Baskar S, Gaglione EM, Keyvanfar K, Ahn IE, Wiestner A, Sun C. Select Antitumor Cytotoxic CD8 + T Clonotypes Expand in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4624-4633. [PMID: 33875521 DOI: 10.1158/1078-0432.ccr-20-4894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), the T-cell receptor (TCR) repertoire is skewed and tumor-derived antigens are hypothesized as drivers of oligoclonal expansion. Ibrutinib, a standard treatment for CLL, inhibits not only Bruton tyrosine kinase of the B-cell receptor signaling pathway, but also IL2-inducible kinase of the TCR signaling pathway. T-cell polarization and activation are affected by ibrutinib, but it is unknown whether T cells contribute to clinical response. EXPERIMENTAL DESIGN High-throughput TCRβ sequencing was performed in 77 longitudinal samples from 26 patients with CLL treated with ibrutinib. TCRβ usage in CD4+ and CD8+ T cells and granzyme B expression were assessed by flow cytometric analysis. Antitumor cytotoxicity of T cells expanded with autologous CLL cells or with antigen-independent anti-CD3/CD28/CD137 beads was tested. RESULTS The clonality of the TCR repertoire increased at the time of response. With extended treatment, TCR clonality remained stable in patients with sustained remission and decreased in patients with disease progression. Expanded clonotypes were rarely shared between patients, indicating specificity for private antigens. Flow cytometry demonstrated a predominance of CD8+ cells among expanded clonotypes. Importantly, bulk T cells from responding patients were cytotoxic against autologous CLL cells in vitro and selective depletion of major expanded clonotypes reduced CLL cell killing. CONCLUSIONS In patients with CLL, established T-cell responses directed against tumor are suppressed by disease and reactivated by ibrutinib.See related commentary by Zent, p. 4465.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.,Lymphoid Neoplasms, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
14
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
15
|
da Cunha-Bang C, Rostgaard K, Andersen MA, Rotbain EC, Grønbaek K, Frederiksen H, Niemann CU, Hjalgrim H. Risk of new malignancies among patients with CLL treated with chemotherapy: results of a Danish population-based study. Br J Haematol 2021; 193:339-345. [PMID: 33570184 DOI: 10.1111/bjh.17337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023]
Abstract
Patients with chronic lymphocytic leukaemia (CLL) have an increased risk of new malignancies. However, limited data have been published about the impact of CLL treatment on this risk. Here we followed a Danish population-based cohort of CLL patients for risks of new malignancies. Patients in the Danish CLL registry (2008-2017) were included. Up to 50 CLL-free matched comparators were identified. First-line treatment was categorized into four groups; bendamustine, chlorambucil, fludarabine or other. Patients were followed from CLL diagnosis for individual types of malignancy. Adjusted hazard ratios (HR) for new malignancies and 95% confidence intervals (95% CI) were calculated. Overall, 4286 CLL patients and 214 150 controls developed 594 and 20 565 new malignancies respectively. Risk of new malignancies was increased for CLL patients. Chemotherapy treatment was registered for 1064 (25%) patients with CLL. Chemotherapy was associated with increased HR (1·51, 95% CI: 1·3-1·8) of any new malignancy. Specifically, fludarabine was associated with an increased risk of myelodysplastic syndrome (MDS) (HR 4·93, 95% CI: 1·2-19·8). Patients with CLL are at increased risk of other haematological and solid malignancies compared to the general population. Chemotherapy exposure is associated with increased risk of second malignancies and fludarabine is associated with increased risk of MDS.
Collapse
Affiliation(s)
- Caspar da Cunha-Bang
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Rostgaard
- Department of Epidemiology Research, Statens Serum Institut - SSI, Copenhagen, Denmark
| | - Michael A Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut - SSI, Copenhagen, Denmark
| | - Emelie C Rotbain
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Frederiksen
- Department of Hematology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut - SSI, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Hartert KT, Wenzl K, Krull JE, Manske M, Sarangi V, Asmann Y, Larson MC, Maurer MJ, Slager S, Macon WR, King RL, Feldman AL, Gandhi AK, Link BK, Habermann TM, Yang ZZ, Ansell SM, Cerhan JR, Witzig TE, Nowakowski GS, Novak AJ. Targeting of inflammatory pathways with R2CHOP in high-risk DLBCL. Leukemia 2021; 35:522-533. [PMID: 32139889 PMCID: PMC7483252 DOI: 10.1038/s41375-020-0766-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma, and front line therapies have not improved overall outcomes since the advent of immunochemotherapy. By pairing DNA and gene expression data with clinical response data, we identified a high-risk subset of non-GCB DLBCL patients characterized by genomic alterations and expression signatures capable of sustaining an inflammatory environment. These mutational alterations (PIM1, SPEN, and MYD88 [L265P]) and expression signatures (NF-κB, IRF4, and JAK-STAT engagement) were associated with proliferative signaling, and were found to be enriched in patients treated with RCHOP that experienced unfavorable outcomes. However, patients with these high-risk mutations had more favorable outcomes when the immunomodulatory agent lenalidomide was added to RCHOP (R2CHOP). We are the first to report the genomic validation of a high-risk phenotype with a preferential response towards R2CHOP therapy in non-GCB DLBCL patients. These conclusions could be translated to a clinical setting to identify the ~38% of non-GCB patients that could be considered high-risk, and would benefit from alternative therapies to standard RCHOP based on personalized genomic data.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cyclophosphamide/administration & dosage
- Doxorubicin/administration & dosage
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lenalidomide/administration & dosage
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Prednisone/administration & dosage
- Prognosis
- Retrospective Studies
- Rituximab/administration & dosage
- Survival Rate
- Vincristine/administration & dosage
- Young Adult
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa C Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Maurer
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - William R Macon
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Rebecca L King
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Brian K Link
- Division of Hematology, Oncology, and Bone & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | | | | | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Ioannou N, Hagner PR, Stokes M, Gandhi AK, Apollonio B, Fanous M, Papazoglou D, Sutton LA, Rosenquist R, Amini RM, Chiu H, Lopez-Girona A, Janardhanan P, Awan FT, Jones J, Kay NE, Shanafelt TD, Tallman MS, Stamatopoulos K, Patten PEM, Vardi A, Ramsay AG. Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood 2021; 137:216-231. [PMID: 33024998 PMCID: PMC7820876 DOI: 10.1182/blood.2020006073] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer treatment has been transformed by checkpoint blockade therapies, with the highest anti-tumor activity of anti-programmed death 1 (PD-1) antibody therapy seen in Hodgkin lymphoma. Disappointingly, response rates have been low in the non-Hodgkin lymphomas, with no activity seen in relapsed/refractory chronic lymphocytic leukemia (CLL) with PD-1 blockade. Thus, identifying more powerful combination therapy is required for these patients. Here, we preclinically demonstrate enhanced anti-CLL activity following combinational therapy with anti-PD-1 or anti-PD-1 ligand (PD-L1) and avadomide, a cereblon E3 ligase modulator (CELMoD). Avadomide induced type I and II interferon (IFN) signaling in patient T cells, triggering a feedforward cascade of reinvigorated T-cell responses. Immune modeling assays demonstrated that avadomide stimulated T-cell activation, chemokine expression, motility and lytic synapses with CLL cells, as well as IFN-inducible feedback inhibition through upregulation of PD-L1. Patient-derived xenograft tumors treated with avadomide were converted to CD8+ T cell-inflamed tumor microenvironments that responded to anti-PD-L1/PD-1-based combination therapy. Notably, clinical analyses showed increased PD-L1 expression on T cells, as well as intratumoral expression of chemokine signaling genes in B-cell malignancy patients receiving avadomide-based therapy. These data illustrate the importance of overcoming a low inflammatory T-cell state to successfully sensitize CLL to checkpoint blockade-based combination therapy.
Collapse
Affiliation(s)
- Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | | | | | - Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mariam Fanous
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | | | | | | | - Farrukh T Awan
- Division of Hematology, The Ohio State University Cancer Center, Columbus, OH
| | | | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Piers E M Patten
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Department of Haematology, King's College Hospital NHS Foundation Trust, London, United Kingdom; and
| | - Anna Vardi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Blanco G, Puiggros A, Sherry B, Nonell L, Calvo X, Puigdecanet E, Chiu PY, Kieso Y, Ferrer G, Palacios F, Arnal M, Rodríguez-Rivera M, Gimeno E, Abella E, Rai KR, Abrisqueta P, Bosch F, Calon A, Ferrer A, Chiorazzi N, Espinet B. Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Exp Hematol 2021; 95:68-80. [PMID: 33421548 DOI: 10.1016/j.exphem.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Several studies in chronic lymphocytic leukemia (CLL) patients have reported impaired immune cell functions, which contribute to tumor evasion and disease progression. However, studies on CLL-like monoclonal B-cell lymphocytosis (MBL) are scarce. In the study described here, we characterized the immune environment in 62 individuals with clinical MBL, 56 patients with early-stage CLL, and 31 healthy controls. Gene expression arrays and quantitative reverse transcription polymerase chain reaction were performed on RNA from CD4+ peripheral blood cells; serum cytokines were measured with immunoassays; and HLA-DR expression on circulating monocytes, as well as the percentages of Th1, cytotoxic, exhausted, and effector CD4+ T cells, were evaluated by flow cytometry. In addition, cell cultures of clonal B cells and CD14-enriched or -depleted cell fractions were performed. Strikingly, MBL and early-stage CLL differed in pro-inflammatory signatures. An increased inflammatory drive orchestrated mainly by monocytes was identified in MBL, which exhibited enhanced phagocytosis, pattern recognition receptors, interleukin-8 (IL8), HMGB1, and acute response signaling pathways and increased pro-inflammatory cytokines (in particular IL8, interferon γ [IFNγ], and tumor necrosis factor α). This inflammatory signature was diminished in early-stage CLL (reduced IL8 and IFNγ levels, IL8 signaling pathway, and monocytic HLA-DR expression compared with MBL), especially in those patients with mutations in IGHV genes. Additionally, CD4+ T cells of MBL and early-stage CLL exhibited a similar upregulation of Th1 and cytotoxic genes and expanded CXCR3+ and perforin+ CD4+ T cells, as well as PD1+ CD4+ T cells, compared with controls. Cell culture assays disclosed tumor-supporting effects of monocytes similarly observed in MBL and early-stage CLL. These novel findings reveal differences in the inflammatory environment between MBL and CLL, highlighting an active role for antigen stimulation in the very early stages of the disease, potentially related to malignant B-cell transformation.
Collapse
Affiliation(s)
- Gonzalo Blanco
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY; Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY
| | | | - Xavier Calvo
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Pui Yan Chiu
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yasmine Kieso
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | | | - María Rodríguez-Rivera
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Eva Gimeno
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Eugènia Abella
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Kanti R Rai
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Pau Abrisqueta
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Bosch
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alexandre Calon
- Laboratori de Recerca Translacional en Microambient Tumoral, Cancer Research Program, IMIM, Barcelona, Spain
| | - Ana Ferrer
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Nicholas Chiorazzi
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| |
Collapse
|
19
|
Hijikata Y, Yokoyama K, Yokoyama N, Matsubara Y, Shimizu E, Nakashima M, Yamagishi M, Ota Y, Lim LA, Yamaguchi R, Ito M, Tanaka Y, Denda T, Tani K, Yotsuyanagi H, Imoto S, Miyano S, Uchimaru K, Tojo A. Successful Clinical Sequencing by Molecular Tumor Board in an Elderly Patient With Refractory Sézary Syndrome. JCO Precis Oncol 2020; 4:534-560. [DOI: 10.1200/po.19.00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yasuki Hijikata
- Department of General Medicine, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nozomi Yokoyama
- Department of Applied Genomics, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuo Matsubara
- Department of General Medicine, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eigo Shimizu
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Diagnostic Pathology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Lay Ahyoung Lim
- Department of General Medicine, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mika Ito
- Division of Molecular Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukihisa Tanaka
- Department of Diagnostic Pathology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Diagnostic Pathology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Department of General Medicine, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of General Medicine, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Thangavadivel S, Zhao Q, Epperla N, Rike L, Mo X, Badawi M, Bystry DM, Phelps MA, Andritsos LA, Rogers KA, Jones J, Woyach JA, Byrd JC, Awan FT. Early Intervention with Lenalidomide in Patients with High-risk Chronic Lymphocytic Leukemia. Clin Cancer Res 2020; 26:6187-6195. [PMID: 32958702 DOI: 10.1158/1078-0432.ccr-20-1280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Infectious complications constitute a leading cause of morbidity and mortality in chronic lymphocytic leukemia (CLL). Patients respond poorly to vaccines, particularly pneumococcal polysaccharide and influenza vaccines. In addition, patients with genetically high-risk disease are at increased risk for early disease progression and death. Lenalidomide, an oral immunomodulatory agent with demonstrated clinical activity in CLL, can potentially restore immune system dysfunction associated with CLL while improving disease outcomes. PATIENTS AND METHODS Phase II study randomized 49 patients with genetically high-risk CLL or small lymphocytic lymphoma [SLL; defined as unmutated Ig heavy chain variable region, deletion(17p) or (11q), and/or complex abnormal karyotype], to receive lenalidomide either concurrent (arm A) or sequential to (arm B) two doses of 13-valent protein-conjugated pneumococcal vaccine (PCV13) administered 2 months apart, in patients not meeting International Workshop on Chronic Lymphocytic Leukemia treatment criteria. RESULTS Four serotypes (3, 4, 5, 6B) achieved the additional seroprotection definition of a fourfold increase in arm A, and six serotypes (3, 4, 5, 6B, 19A, 19F) in arm B. All patients achieved the defined concentration of 0.35 μg/mL for at least one serotype tested. No significant difference was observed with the addition of lenalidomide. At median time on treatment of 3.6 years, median progression-free survival (PFS) was 5.8 years [95% confidence interval (CI), 3.1-not reached]. PFS at 1, 2, and 3 years was 85% (95% CI, 72-93), 79% (95% CI, 64-88), and 72% (95% CI, 57-83), respectively. CONCLUSIONS Lenalidomide is efficacious with manageable toxicities as an early intervention strategy in patients with high-risk CLL, but did not enhance humoral response to PCV13 vaccine.
Collapse
Affiliation(s)
| | - Qiuhong Zhao
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Narendranath Epperla
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lindsey Rike
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Mohamed Badawi
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Darlene M Bystry
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch A Phelps
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Leslie A Andritsos
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Kerry A Rogers
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey Jones
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Farrukh T Awan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
21
|
Ringelstein-Harlev S. Immune dysfunction complexity in chronic lymphocytic leukemia ‒ an issue to consider when designing novel therapeutic strategies. Leuk Lymphoma 2020; 61:2050-2058. [PMID: 32336174 DOI: 10.1080/10428194.2020.1755857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A complex interplay between chronic lymphocytic leukemia (CLL) cells and different constituents of the immune system generally results in immune tolerance. As targeted therapies are gaining a critical role in the therapeutic landscape of this disease, their impact on the already perturbed immune milieu needs to be considered. This review addresses the issues of basic immune dysfunction in CLL which is further complicated by the effects of a number of novel targeted therapies used for this malignancy. These new approaches may simultaneously facilitate both anti- and pro-cancer activity, potentially compromising the depth of response to therapy. Current evidence suggests that exploiting combination therapy could potentially overcome at least part of these deleterious effects, thereby prolonging response to treatment and helping to restore immune activity.
Collapse
Affiliation(s)
- Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
22
|
Mhibik M, Wiestner A, Sun C. Harnessing the Effects of BTKi on T Cells for Effective Immunotherapy against CLL. Int J Mol Sci 2019; 21:ijms21010068. [PMID: 31861854 PMCID: PMC6981459 DOI: 10.3390/ijms21010068] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
B-cell receptor (BCR) signaling and tumor–microenvironment crosstalk both drive chronic lymphocytic leukemia (CLL) pathogenesis. Within the microenvironment, tumor cells shape the T-cell compartment, which in turn supports tumor growth and survival. Targeting BCR signaling using Bruton tyrosine kinase inhibitors (BTKi) has become a highly successful treatment modality for CLL. Ibrutinib, the first-in-class BTKi, also inhibits Tec family kinases such as interleukin-2–inducible kinase (ITK), a proximal member of the T-cell receptor signaling cascade. It is increasingly recognized that ibrutinib modulates the T-cell compartment of patients with CLL. Understanding these T-cell changes is important for immunotherapy-based approaches aiming to increase the depth of response and to prevent or treat the emergence of resistant disease. Ibrutinib has been shown to improve T-cell function in CLL, resulting in the expansion of memory T cells, Th1 polarization, reduced expression of inhibitory receptors and improved immune synapse formation between T cells and CLL cells. Investigating the modulation of BTKi on the T-cell antitumoral function, and having a more complete understanding of changes in T cell behavior and function during treatment with BTKi therapy will inform the design of immunotherapy-based combination approaches and increase the efficacy of CLL therapy.
Collapse
Affiliation(s)
| | | | - Clare Sun
- Correspondence: ; Tel.: +1-301-402-1806
| |
Collapse
|
23
|
Abstract
Chronic lymphocytic leukaemia (CLL) has long been thought to be an immunosuppressive disease and abnormalities in T-cell subset distribution and function have been observed in many studies. However, the role of T cells (if any) in disease progression remains unclear and has not been directly studied. This has changed with the advent of new therapies, such as chimeric antigen receptor-T cells, which actively use retargeted patient-derived T cells as "living drugs" for CLL. However complete responses are relatively low (~26%) and recent studies have suggested the differentiation status of patient T cells before therapy may influence efficacy. Non-chemotherapeutic drugs, such as idelalisib and ibrutinib, also have an impact on T cell populations in CLL patients. This review will highlight what is known about T cells in CLL during disease progression and after treatment, and discuss the prospects of using T cells as predictive biomarkers for immune status and response to therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Piperidines
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Stephen Man
- Section of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Peter Henley
- Section of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|