1
|
Sirimanapong W, Thaijongrak P, Sudpraseart C, Bela-Ong DB, Rodelas-Angelia AJD, Angelia MRN, Hong S, Kim J, Thompson KD, Jung TS. Passive immunoprophylaxis with Ccombodies against Vibrio parahaemolyticus in Pacific white shrimp (Penaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109973. [PMID: 39426641 DOI: 10.1016/j.fsi.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (AHPND) in shrimp secretes toxins A and B (PirAVp/PirBVp). These toxins have been implicated in pathogenesis and are targets for developing anti-AHPND therapeutics or prophylactics that include passive immunization. We have previously reported that Ccombodies (recombinant hagfish variable lymphocyte receptor B antibodies; VLRB) targeting PirBVp conferred protection against V. parahaemolyticus in shrimp when administered as a feed supplement. In this study, we screened a phage-displayed library of engineered VLRBs for PirAVp-targeting Ccombodies that were mass-produced in a bacterial expression system. We then introduced these Ccombodies into the diet of Pacific white shrimp (Penaeus vannamei) over a seven-day period. Subsequently, the shrimp were exposed to a challenge with V. parahaemolyticus. Mortality rates were then observed and recorded over the following seven days. Administering shrimp feed supplemented with Ccombodies at a high dose (100 mg per 100 g feed) reduced mortality in recipient animals (2.96-5.19 %) statistically similar to mock-challenged control (1.48 %), but significantly different from the Ccombody-deficient control (74.81 %). This suggests that the Ccombodies provided strong protection against the bacterium. Feeding shrimp with a median dose (10 mg/100 g feed) gave statistically comparable low mortality (5.93-6.67 %) as the high dose. Reducing the Ccombody dose to 1 mg/100 g feed showed variable effects. Ccombody A2 showed mortality (11.85 %) significantly lower than that of the Ccombody-deficient group (74.81 %), suggesting that it can effectively protect against the bacterial challenge at a low dose. Our results demonstrate the ability of the phage-displayed VLRB library to generate antigen-specific Ccombodies rapidly and simply, with the expression of high protein levels in bacteria. The protective effect provided by these Ccombodies aligns with our earlier results, strongly supporting the use of VLRB antibodies as a substitute for IgY in passive immunoprophylaxis against AHPND in shrimp.
Collapse
Affiliation(s)
- Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Prawporn Thaijongrak
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Chiranan Sudpraseart
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Dennis Berbulla Bela-Ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Abigail Joy D Rodelas-Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Mark Rickard N Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Institute of Chemistry, University of the Philippines Los Banos, College, 4031, Laguna, Philippines
| | - Seungbeom Hong
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Jaesung Kim
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Scotland, United Kingdom
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea.
| |
Collapse
|
2
|
Passive Immunization with Recombinant Antibody VLRB-PirA vp/PirB vp-Enriched Feeds against Vibrio parahaemolyticus Infection in Litopenaeus vannamei Shrimp. Vaccines (Basel) 2021; 9:vaccines9010055. [PMID: 33467013 PMCID: PMC7829966 DOI: 10.3390/vaccines9010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
The causative agent of acute hepatopancreatic necrosis disease (AHPND) is the bacterium, Vibrio parahaemolyticus, which secretes toxins into the gastrointestinal tract of its host. Vibrio parahaemolyticus toxins A and B (PirAvp/PirBvp) have been implicated in the pathogenesis of this disease, and are, therefore, the focus of studies developing treatments for AHPND. We previously produced recombinant antibodies based on the hagfish variable lymphocyte receptor B (VLRB) capable of neutralizing some viruses, suggesting that this type of antibody may have a potential application for treatment of AHPND. Here, recombinant PirAvp/PirBvp, produced using a bacterial expression system, were used as antigens to screen a hagfish VLRB cDNA library to obtain PirAvp/PirBvp-specific antibodies. A cell line secreting these antibodies was established by screening and cloning the DNA extracted from hagfish B cells. Supernatants collected from cells secreting the PirAvp/PirBvp antibodies were collected and concentrated, and used to passively immunize shrimp to neutralize the toxins PirAvp or PirBvp associated with AHPND. Briefly, 10 μg of PirAvp and PirBvp antibodies, 7C12 and 9G10, respectively, were mixed with the shrimp feed, and fed to shrimp for three days consecutive days prior to experimentally infecting the shrimp with V. parahaemolyticus (containing toxins A and B), and resulting mortalities recorded for six days. Results showed significantly higher level of survival in shrimp fed with the PirBvp-9G10 antibody (60%) compared to the group fed the PirAvp-7C12 antibody (3%) and the control group (0%). This suggests that VLRB antibodies may be a suitable alternative to immunoglobulin-based antibodies, as passive immunization treatments for effective management of AHPND outbreaks within shrimp farms.
Collapse
|
3
|
Jung JW, Lee JS, Kim J, Im SP, Kim SW, Lazarte JMS, Kim YR, Chun JH, Ha MW, Kim HS, Thompson KD, Jung TS. Characterization of Hagfish ( Eptatretus burgeri) Variable Lymphocyte Receptor-Based Antibody and Its Potential Role in the Neutralization of Nervous Necrosis Virus. THE JOURNAL OF IMMUNOLOGY 2019; 204:718-725. [PMID: 31836656 DOI: 10.4049/jimmunol.1900675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The variable lymphocyte receptor (VLR) mediates the humoral immune response in jawless vertebrates, including lamprey (Petromyzon marinus) and hagfish (Eptatretus burgeri). Hagfish VLRBs are composed of leucine-rich repeat (LRR) modules, conjugated with a superhydrophobic C-terminal tail, which contributes to low levels of expression in recombinant protein technology. In this study, we screened Ag-specific VLRBs from hagfish immunized with nervous necrosis virus (NNV). The artificially multimerized form of VLRB was constructed using a mammalian expression system. To enhance the level of expression of the Ag-specific VLRB, mutagenesis of the VLRB was achieved in vitro through domain swapping of the LRR C-terminal cap and variable LRR module. The mutant VLRB obtained, with high expression and secretion levels, was able to specifically recognize purified and progeny NNV, and the Ag binding ability of this mutant was increased by at least 250-fold to that of the nonmutant VLRB. Furthermore, preincubation of the Ag-specific VLRB with NNV reduced the infectivity of NNV in E11 cells in vitro, and in vivo experiment. Our results suggest that the newly developed Ag-specific VLRB has the potential to be used as diagnostic and therapeutic reagents for NNV infections in fish.
Collapse
Affiliation(s)
- Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jin Hong Chun
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Min Woo Ha
- College of Pharmacy, Gyeongsang National University, Jinju-daero, Jinju, Gyeongnam 52828, South Korea
| | - Hyeong Su Kim
- Inland Aquaculture Research Center, National Institute of Fisheries Science, Changwon 645-806, South Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, United Kingdom; and
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; .,Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
4
|
Development of a modified yeast display system for screening antigen-specific variable lymphocyte receptor B in hagfish (Eptatretus burgeri). J Immunol Methods 2019; 466:24-31. [DOI: 10.1016/j.jim.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
5
|
Lee JS, Kim J, Im SP, Kim SW, Jung JW, Lazarte JMS, Lee JH, Thompson KD, Jung TS. Dual functionality of lamprey VLRB C-terminus (LC) for multimerization and cell surface display. Mol Immunol 2018; 104:54-60. [PMID: 30408623 DOI: 10.1016/j.molimm.2018.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 10/27/2022]
Abstract
Lamprey, one of the living representatives of jawless vertebrates, uses variable lymphocyte receptors B (VLRB) for antigen recognition, rather than immunoglobulin (Ig) based receptors as used by higher vertebrates. The C-terminus of lamprey VLRB (LC) possess a glycosylphosphatidylinositol (GPI) signal sequence and seven cysteine residues providing dual functionality of the VLRB antibody in the form of a humoral agglutinin and cell membrane receptors. Here, we show that the LC can be either secreted or be membrane anchored as a heterologous fused protein in a multimeric form comprising of eight or ten monomeric units. Using serially truncated LC variants, we showed that the LC, in which the last three amino acid "RKR" were deleted, referred to as LC7, was the most suitable domain for multimeric construction, whereas, the intact LC is more tailored for applications involving membrane anchorage. We show that an antibody specific for viral hemorrhagic septicemia virus (VHSV) (VLR43), displayed on HEK-293F cells using a PiggyBac (PB) transposase system, exhibited a dose-dependent reaction with its antigen, verifying that the LC can be applied in antibody display technology. Therefore, the present report provides valuable insight into the structure of the lamprey VLRB and highlights its potential use as a novel fusion partner for multimerization and membrane anchorage of chimeric proteins.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea
| | - Jeong Ho Lee
- Inland Aquaculture Research Center, NIFS, Changwon, 645-806, South Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University 900 Gajwadong, Jinju, Gyeongnam, 660-701, South Korea.
| |
Collapse
|