1
|
Li T, Wu T, Li X, Qian C. Transcriptional switches in melanoma T Cells: Facilitating polarizing into regulatory T cells. Int Immunopharmacol 2024; 137:112484. [PMID: 38885605 DOI: 10.1016/j.intimp.2024.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Melanoma is a malignant skin tumor with a high mortality rate. Regulatory T cells (Tregs) are immune cells with immunosuppressive roles, however, the precise mechanisms governing Treg involvement in melanoma remain enigmatic. Experimental findings unveiled different transcription factor switches between normal and tumor T cell, with heightened FOXP3 and BATF in the latter. These factors induced immunosuppressive molecules and Treg maintenance genes, polarizing tumor T cells into Tregs. Spatial transcriptomics illuminated the preferential settlement of Tregs at the melanoma periphery. Within this context, FOXP3 in Tregs facilitated direct enhancement of specific ligand gene expression, fostering communication with neighboring cells. Novel functional molecules bound to FOXP3 or BATF in Tregs, such as SPOCK2, SH2D2A, and ligand molecules ITGB2, LTA, CLEC2C, CLEC2D, were discovered, which had not been previously reported in melanoma Treg studies. Furthermore, we validated our findings in a large number of clinical samples and identified the Melanoma Treg-Specific Regulatory Tag Set (Mel TregS). ELISA analysis showed that the protein levels of Mel TregS in melanoma Tregs were higher than in normal Tregs. We then utilized SERS technology to measure the signal values of Mel TregS in exosome, and successfully discriminated between healthy individuals and melanoma patients, as well as early and late-stage patients. This approach significantly enhanced detection sensitivity. In sum, our research elucidated fresh insights into the mechanisms governing Treg self-maintenance and communication with surrounding cells in melanoma. We also introduced an innovative method for clinical disease monitoring through SERS technology.
Collapse
Affiliation(s)
- Tengda Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Tianqin Wu
- The 100th Hospital of PLA, Suzhou 215006, China
| | - Xiang Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cheng Qian
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
2
|
Guo RY, Song S, Wang JQ, Guo JY, Liu J, Jia Z, Yuan CC, Li B. Downregulation of lncRNA XIST may promote Th17 differentiation through KDM6A-TSAd pathway in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2023; 76:104801. [PMID: 37315471 DOI: 10.1016/j.msard.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUNDS Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease with significant female preponderance. X inactive specific transcript (XIST) is a long non-coding RNA (lncRNA) and a key regulator of X-chromosome inactivation which is related to the sex-bias of autoimmunity. And Th17 cell proportion was significantly elevated in NMOSD according to our previous study. OBJECTIVES This study aimed to explore the expression levels of lncRNA XIST-KDM6A-TSAd pathway in lymphocytes of female NMOSD patients, and investigate its possible relationship with pathogenesis of NMOSD. METHODS AND RESULTS The study enrolled 30 acute-phase untreated female NMOSD patients and 30 age-matched female healthy controls, their lymphocytes were collected for experiments. Microarray as well as validation experiments showed lncRNA XIST was significantly downregulated in the NMOSD group. And the levels of lysine demethylase 6A (KDM6A) decreased in NMOSD and showed significant positive correlation with XIST. The levels of T cell-specific adapter (TSAd) mRNA and protein levels were significantly lower in NMOSD. And Chromatin immunoprecipitation assay demonstrated that NMOSD had more H3K27me3 modification than control at TSAd promoter region. CONCLUSIONS The present study introduced a potential pathway that following lncRNA XIST downregulation, which process may promote Th17 differentiation in NMOSD. These findings shed new light on the immune regulation mechanism about lncRNA XIST and related epigenetic features, which may contribute to develop female-specific treatment plans.
Collapse
Affiliation(s)
- Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jue-Qiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jiang-Yuan Guo
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Cong-Cong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
3
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
4
|
Blagih J, Hennequart M, Zani F. Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Front Immunol 2021; 12:637960. [PMID: 33868263 PMCID: PMC8050341 DOI: 10.3389/fimmu.2021.637960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.
Collapse
Affiliation(s)
| | | | - Fabio Zani
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
5
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
6
|
Yi FS, Zhang X, Zhai K, Huang ZY, Wu XZ, Wu MT, Shi XY, Pei XB, Dong SF, Wang W, Yang Y, Du J, Luo ZT, Shi HZ. TSAd Plays a Major Role in Myo9b-Mediated Suppression of Malignant Pleural Effusion by Regulating T H1/T H17 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 205:2926-2935. [PMID: 33046503 DOI: 10.4049/jimmunol.2000307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Emerging evidence indicates that Myo9b is a cancer metastasis-related protein and functions in a variety of immune-related diseases. However, it is not clear whether and how Myo9b functions in malignant pleural effusion (MPE). In this study, our data showed that Myo9b expression levels correlated with lung cancer pleural metastasis, and nucleated cells in MPE from either patients or mice expressed a lower level of Myo9b than those in the corresponding blood. Myo9b deficiency in cancer cells suppressed MPE development via inhibition of migration. Myo9b deficiency in mice suppressed MPE development by decreasing TH1 cells and increasing TH17 cells. CD4+ naive T cells isolated from Myo9b-/- mouse spleens exhibited less TH1 cell differentiation and more TH17 cell differentiation in vitro. mRNA sequencing of nucleated cells showed that T cell-specific adaptor protein (TSAd) was downregulated in Myo9b-/- mouse MPE, and enrichment of the H3K27me3 mark in the TSAd promoter region was found in the Myo9b-/- group. Naive T cells purified from wild type mouse spleens transfected with TSAd-specific small interfering RNAs (siRNAs) also showed less TH1 cell differentiation and more TH17 cell differentiation than those from the siRNA control group. Furthermore, downregulation of TSAd in mice using cholesterol-conjugated TSAd-specific siRNA suppressed MPE development, decreased TH1 cells, and increased TH17 cells in MPE in vivo. Taken together, Myo9b deficiency suppresses MPE development not only by suppressing pleural cancer metastasis but also by regulating TH1/TH17 cell response via a TSAd-dependent pathway. This work suggests Myo9b and TSAd as novel candidates for future basic and clinical investigations of cancer.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Min-Ting Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Juan Du
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeng-Tao Luo
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Capital Medical University, Beijing 100020, China; and Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|