1
|
Scheuplein F, Renner F, Campbell JE, Campbell R, De Savi C, Eckmann J, Fischer H, Ge J, Green L, Jakob P, Kim JL, Kinkema C, McGinn K, Medina R, Müller A, Perez N, Perola E, Timsit Y, Traore T, Hopfer U, Tyanova S, Tzouros M, Wang R, Woessner R, Dorsch M, Bischoff JR. Evaluation of STK17B as a cancer immunotherapy target utilizing highly potent and selective small molecule inhibitors. Front Immunol 2024; 15:1411395. [PMID: 39502695 PMCID: PMC11536310 DOI: 10.3389/fimmu.2024.1411395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The serine/threonine kinase 17B (STK17B) is involved in setting the threshold for T cell activation and its absence sensitizes T cells to suboptimal stimuli. Consequently, STK17B represents an attractive potential target for cancer immunotherapy. Methods To assess the potential of STK17B as an immuno-oncology target, we developed potent and selective tool compounds from starting points in Blueprint Medicines Corporation's proprietary kinase inhibitor library. To characterize these molecules, enzyme and cellular assays for STK17A and STK17B were established to drive chemistry optimization. Mass spectrometry-based phosphoproteomics profiling with tool inhibitors led to the identification of Ser19 on myosin light chain 2 as STK17B substrate, which is then developed into a flow cytometry-based pharmacodynamic readout of STK17B inhibition both in vitro and in vivo. Results In a mouse T cell activation assay, STK17B inhibitors demonstrated the ability to enhance interleukin-2 (IL-2) production. Similarly, treatment with STK17B inhibitors resulted in stronger cytokine secretion in human T cells activated using a T cell bispecific antibody. Subsequent chemistry optimization led to the identification of a highly selective and orally bioavailable tool compound, BLU7482. In vivo, STK17B inhibition led to dose-dependent modulation of myosin light chain 2 phosphorylation and enhanced priming of naïve T cells, as determined by upregulation of CD69, IL-2 and interferon-γ secretion. In line with increased T cell activation, treatment with STK17B inhibitor enhanced antitumor activity of anti-PD-L1 antibody in the MCA205 model. Conclusions In summary, we successfully identified and optimized STK17B kinase inhibitors which led to increased T cell responses in vitro and in vivo. This allowed us to evaluate the potential of STK17B inhibition as an approach for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Robert Campbell
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Chris De Savi
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Jan Eckmann
- Roche Innovation Center Munich, Penzberg, Germany
| | | | - Jie Ge
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Luke Green
- Roche Innovation Center Basel, Basel, Switzerland
| | - Peter Jakob
- Roche Innovation Center Basel, Basel, Switzerland
| | - Joseph L. Kim
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Caitlin Kinkema
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Katie McGinn
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Ricardo Medina
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | | | - Nisha Perez
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Emanuele Perola
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Yoav Timsit
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | - Tary Traore
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | | | | | | | - Ruduan Wang
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | | | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, MA, United States
| | | |
Collapse
|
2
|
Djurkovic F, Ferjancic Z, Bihelovic F. Intramolecular Dearomative Inverse-Electron-Demand Diels Alder Strategy for the Total Synthesis of (+)-Alstonlarsine A. J Org Chem 2023; 88:11618-11626. [PMID: 37556165 DOI: 10.1021/acs.joc.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An evolution of a synthetic route leading to a successful enantioselective total synthesis of monoterpenoid indole alkaloid (+)-alstonlarsine A is represented. The unique 9-azatricyclo[4.3.1.03,8]decane core was assembled through an efficient domino sequence comprising enamine formation in situ, followed by intramolecular dearomative inverse-electron-demand Diels Alder reaction. The preparation of the tricyclic dihydrocyclohepta[b]indole key intermediate via the intramolecular Horner-Wadsworth-Emmons reaction required a development of a new general method for the introduction of the phosphonoacetate moiety into the indole C-2 position, through copper-carbenoid insertion. The modular nature of the represented synthetic approach makes it suitable for the synthesis of analogues with different substituents' patterns.
Collapse
Affiliation(s)
- Filip Djurkovic
- University of Belgrade─Faculty of Chemistry, Studentski trg 16, POB 51, Belgrade 11158, Serbia
| | - Zorana Ferjancic
- University of Belgrade─Faculty of Chemistry, Studentski trg 16, POB 51, Belgrade 11158, Serbia
| | - Filip Bihelovic
- University of Belgrade─Faculty of Chemistry, Studentski trg 16, POB 51, Belgrade 11158, Serbia
| |
Collapse
|
3
|
Mandarano AH, Harris TL, Creasy BM, Wehenkel M, Duggar M, Wilander BA, Mishra A, Crawford JC, Mullen SA, Williams KM, Pillai M, High AA, McGargill MA. DRAK2 contributes to type 1 diabetes by negatively regulating IL-2 sensitivity to alter regulatory T cell development. Cell Rep 2023; 42:112106. [PMID: 36773294 PMCID: PMC10412737 DOI: 10.1016/j.celrep.2023.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Drak2-deficient (Drak2-/-) mice are resistant to multiple models of autoimmunity yet effectively eliminate pathogens and tumors. Thus, DRAK2 represents a potential target to treat autoimmune diseases. However, the mechanisms by which DRAK2 contributes to autoimmunity, particularly type 1 diabetes (T1D), remain unresolved. Here, we demonstrate that resistance to T1D in non-obese diabetic (NOD) mice is due to the absence of Drak2 in T cells and requires the presence of regulatory T cells (Tregs). Contrary to previous hypotheses, we show that DRAK2 does not limit TCR signaling. Rather, DRAK2 regulates IL-2 signaling by inhibiting STAT5A phosphorylation. We further demonstrate that enhanced sensitivity to IL-2 in the absence of Drak2 augments thymic Treg development. Overall, our data indicate that DRAK2 contributes to autoimmunity in multiple ways by regulating thymic Treg development and by impacting the sensitivity of conventional T cells to Treg-mediated suppression.
Collapse
Affiliation(s)
- Alexandra H Mandarano
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tarsha L Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Blaine M Creasy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marygrace Duggar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Benjamin A Wilander
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sarah A Mullen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine M Williams
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meenu Pillai
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Park S, Kye S, Jung ME, Chae CH, Yang K, Kim S, Choi G, Lee K. Discovery of TRD‐93 as a novel
DRAK2
inhibitor. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sangjun Park
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Seungmin Kye
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Myoung Eun Jung
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
| | - Chong Hak Chae
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
| | | | | | - Gildon Choi
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| | - Kwangho Lee
- Bio & Drug Discovery Division Korea Research Institute of Chemical Technology Daejeon South Korea
- Medicinal Chemistry & Pharmacology University of Science & Technology Daejeon South Korea
| |
Collapse
|
5
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ferjancic Z, Kukuruzar A, Bihelovic F. Total Synthesis of (+)‐Alstonlarsine A. Angew Chem Int Ed Engl 2022; 61:e202210297. [DOI: 10.1002/anie.202210297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Zorana Ferjancic
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Andrej Kukuruzar
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| | - Filip Bihelovic
- University of Belgrade— Faculty of Chemistry Studentski trg 16, POB 51 11158 Belgrade 118 Serbia
| |
Collapse
|
7
|
Ferjancic Z, Kukuruzar A, Bihelovic F. Total Synthesis of (+)‐Alstonlarsine A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zorana Ferjancic
- Univerzitet u Beogradu Hemijski fakultet Faculty of Chemistry 11158 Belgrade SERBIA
| | - Andrej Kukuruzar
- Univerzitet u Beogradu Hemijski fakultet Faculty of Chemistry 11158 Belgrade SERBIA
| | - Filip Bihelovic
- University of Belgrade Faculty of Chemistry Studentski trg 12-16 11158 Belgrade SERBIA
| |
Collapse
|
8
|
Wu QW, Kapfhammer JP. Serine/threonine kinase 17b (STK17B) signalling regulates Purkinje cell dendritic development and is altered in multiple spinocerebellar ataxias. Eur J Neurosci 2021; 54:6673-6684. [PMID: 34536317 PMCID: PMC9292345 DOI: 10.1111/ejn.15465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/28/2022]
Abstract
Serine/threonine kinase 17b (STK17B, also known as DRAK2) is known to be a downstream effector of protein kinase C (PKC) in the immune system, in particular T lymphocytes. PKC activity also plays a critical role for dendritic development and synaptic maturation and plasticity in cerebellar Purkinje cells. We present evidence that STK17B is strongly expressed in mouse cerebellar Purkinje cells starting in the early postnatal period and remaining highly expressed throughout adult stages and that STK17B is a target of PKC phosphorylation in the cerebellum. STK17B overexpression potentiates the morphological changes of Purkinje cells seen after PKC activation, suggesting that it is a downstream effector of PKC. A phosphorylation mimetic STK17B variant induced a marked reduction of Purkinje cell dendritic tree size, whereas the inhibition of STK17B with the novel compound 16 (Cpd16) could partially rescue the morphological changes of the Purkinje cell dendritic tree after PKC activation. These findings show that STK17B signalling is an important downstream effector of PKC activation in Purkinje cells. Furthermore, STK17B was identified as a molecule being transcriptionally downregulated in mouse models of SCA1, SCA7, SCA14 and SCA41. The reduced expression of STK17B in these mouse models might protect Purkinje cell dendrites from the negative effects of overactivated PKC signalling. Our findings provide new insights in the role of STK17B for Purkinje cell dendritic development and the pathology of SCAs.
Collapse
Affiliation(s)
- Qin-Wei Wu
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Picado A, Chaikuad A, Wells CI, Shrestha S, Zuercher WJ, Pickett JE, Kwarcinski FE, Sinha P, de Silva CS, Zutshi R, Liu S, Kannan N, Knapp S, Drewry DH, Willson TM. A Chemical Probe for Dark Kinase STK17B Derives Its Potency and High Selectivity through a Unique P-Loop Conformation. J Med Chem 2020; 63:14626-14646. [PMID: 33215924 PMCID: PMC7816213 DOI: 10.1021/acs.jmedchem.0c01174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STK17B is a member of the death-associated protein kinase family and has been genetically linked to the development of diverse diseases. However, the role of STK17B in normal and disease pathology is poorly defined. Here, we present the discovery of thieno[3,2-d] pyrimidine SGC-STK17B-1 (11s), a high-quality chemical probe for this understudied "dark" kinase. 11s is an ATP-competitive inhibitor that showed remarkable selectivity over other kinases including the closely related STK17A. X-ray crystallography of 11s and related thieno[3,2-d]pyrimidines bound to STK17B revealed a unique P-loop conformation characterized by a salt bridge between R41 and the carboxylic acid of the inhibitor. Molecular dynamic simulations of STK17B revealed the flexibility of the P-loop and a wide range of R41 conformations available to the apo-protein. The isomeric thieno[2,3-d]pyrimidine SGC-STK17B-1N (19g) was identified as a negative control compound. The >100-fold lower activity of 19g on STK17B was attributed to the reduced basicity of its pyrimidine N1.
Collapse
Affiliation(s)
- Alfredo Picado
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438 Frankfurt, Germany
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| | - Julie E. Pickett
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| | | | - Parvathi Sinha
- Luceome Biotechnologies, 1665 E. 18th Street, Suite 106, Tucson, AZ 85719
| | - Chandi S. de Silva
- Luceome Biotechnologies, 1665 E. 18th Street, Suite 106, Tucson, AZ 85719
| | - Reena Zutshi
- Luceome Biotechnologies, 1665 E. 18th Street, Suite 106, Tucson, AZ 85719
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438 Frankfurt, Germany
- German Translational Cancer Network (DKTK) site Frankfurt/Mainz
- Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7264
| |
Collapse
|
10
|
Szoltysek K, Ciardullo C, Zhou P, Walaszczyk A, Willmore E, Rand V, Marshall S, Hall A, J. Harrison C, Eswaran J, Soundararajan M. DAP Kinase-Related Apoptosis-Inducing Protein Kinase 2 (DRAK2) Is a Key Regulator and Molecular Marker in Chronic Lymphocytic Leukemia. Int J Mol Sci 2020; 21:ijms21207663. [PMID: 33081245 PMCID: PMC7593912 DOI: 10.3390/ijms21207663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western World and it is characterized by a marked degree of clinical heterogeneity. An impaired balance between pro- and anti-apoptotic stimuli determines chemorefractoriness and outcome. The low proliferation rate of CLL cells indicates that one of the primary mechanisms involved in disease development may be an apoptotic failure. Here, we study the clinical and functional significance of DRAK2, a novel stress response kinase that plays a critical role in apoptosis, T-cell biology, and B-cell activation in CLL. We have analyzed CLL patient samples and showed that low expression levels of DRAK2 were significantly associated with unfavorable outcome in our CLL cohort. DRAK2 expression levels showed a positive correlation with the expression of DAPK1, and TGFBR1. Consistent with clinical data, the downregulation of DRAK2 in MEC-1 CLL cells strongly increased cell viability and proliferation. Further, our transcriptome data from MEC-1 cells highlighted MAPK, NF-κB, and Akt and as critical signaling hubs upon DRAK2 knockdown. Taken together, our results indicate DRAK2 as a novel marker of CLL survival that plays key regulatory roles in CLL prognosis.
Collapse
MESH Headings
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Cell Survival
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Down-Regulation
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Signaling System
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
Collapse
Affiliation(s)
- Katarzyna Szoltysek
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Gliwice, Poland
| | - Carmela Ciardullo
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Peixun Zhou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Anna Walaszczyk
- Institute of Biosciences, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Vikki Rand
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK;
| | - Andy Hall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Jeyanthy Eswaran
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Newcastle University Medicine Malaysia (NUMed Malaysia), EduCity, Iskandar 79200, Johor, Malaysia
- Correspondence: or (J.E); (M.S.)
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Correspondence: or (J.E); (M.S.)
| |
Collapse
|
11
|
Zhou Y, Leng X, Mo C, Zou Q, Liu Y, Wang Y. The p53 effector Perp mediates the persistence of CD4 + effector memory T-cell undergoing lymphopenia-induced proliferation. Immunol Lett 2020; 224:14-20. [PMID: 32473185 DOI: 10.1016/j.imlet.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Under lymphopenic conditions, the rapid spontaneous proliferation produces cells that robustly differentiate into effector memory T (TEM) cells, and the aberrant expansion is preferentially driven by self-antigens. The pool size of effector memory T-cell is governed by a complex homeostatic balance between proliferation and death. Perp is a critical effector involved in the p53-dependent apoptotic pathway and widely expressed in mammalian tissues. We have previously shown that Perp has a prominent role in activation-induced cell death of peripheral Th17 cells. Here, we show that Peripheral Perp-/-CD4+ TEM cells outcompete wild type TEM cells for access to splenic niches in vivo. The skewing of the Perp-/- TEM cells compartment was not the result of a difference in lymphopenia-induced proliferation, but the resistance to apoptosis, particularly after anti-Fas treatment. Data presented in this work indicate that Perp mediates the persistence of CD4+ TEM cells in irradiation-induced lymphopenic settings.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Emergency, West China Second University Hospital and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China.
| | - Xiao Leng
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Chunfen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Qiang Zou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| | - Yantang Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
12
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
13
|
Investigation of indirubin derivatives: a combination of 3D-QSAR, molecular docking, and ADMET towards the design of new DRAK2 inhibitors. Struct Chem 2018. [DOI: 10.1007/s11224-018-1134-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Yavorski JM, Blanck G. TCGA: Increased oncoprotein coding region mutations correlate with a greater expression of apoptosis-effector genes and a positive outcome for stomach adenocarcinoma. Cell Cycle 2016; 15:2157-2163. [PMID: 27355872 DOI: 10.1080/15384101.2016.1195532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Oncogene mutations are primarily thought to facilitate uncontrolled cell growth. However, overexpression of oncoproteins likely leads to apoptosis in a feed forward mechanism, whereby a certain level of oncoprotein leads to the activation of pro-proliferation effector genes and higher levels lead to activation of pro-apoptotic effector genes. TCGA STAD barcodes having no oncoprotein coding region mutations represented reduced expression of the apoptosis-effector genes compared with barcodes with multiple oncoprotein coding region mutations. Furthermore, STAD barcodes in a "no-subsequent tumor" group, representing 224 samples, and in a "positive outcome" group, had more oncoprotein coding regions mutated, on average, than barcodes of the new tumor and negative outcome groups, respectively. BRAF, CTNNB1, KRAS and MTOR coding region mutations (as a group) had the strongest association with the no-subsequent tumor group. Tumor suppressor coding region mutations were also correlated with no-subsequent tumor. These results are consistent with an oncoprotein-mediated, feed-forward mechanism of apoptosis in patients. Importantly, the no-subsequent tumor group also had more overall mutations. This result leads to considerations of unhealthy cells or cells with more neo-antigens for immune rejection. However, a probabilistic aspect of mutagenesis is also consistent with more oncoprotein and tumor suppressor protein mutations, in cases of more overall mutations, and thus a higher likelihood of activation of feed forward apoptosis pathways.
Collapse
Affiliation(s)
- John M Yavorski
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - George Blanck
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,b Immunology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| |
Collapse
|
15
|
Discovery of indirubin derivatives as new class of DRAK2 inhibitors from high throughput screening. Bioorg Med Chem Lett 2016; 26:2719-23. [PMID: 27106709 DOI: 10.1016/j.bmcl.2016.03.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023]
Abstract
DRAK2 is a serine/threonine kinase belonging to the death-associated protein kinase (DAPK) family and has emerged as a promising drug target for the treatment of autoimmune diseases and cancers. To identify small molecule inhibitors for DRAK2, we performed a high throughput screening campaign using in-house chemical library and identified indirubin-3'-monoximes as novel class of DRAK2 inhibitors. Among the compounds tested, compound 16 exhibited the most potent inhibitory activity against DRAK2 (IC50=0.003μM). We also propose that compound 16 may bind to the ATP-binding site of the enzyme based on enzyme kinetics and molecular docking studies.
Collapse
|
16
|
Harris TL, McGargill MA. Drak2 Does Not Regulate TGF-β Signaling in T Cells. PLoS One 2015; 10:e0123650. [PMID: 25951457 PMCID: PMC4423867 DOI: 10.1371/journal.pone.0123650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
Drak2 is a serine/threonine kinase expressed highest in T cells and B cells. Drak2-/- mice are resistant to autoimmunity in mouse models of type 1 diabetes and multiple sclerosis. Resistance to these diseases occurs, in part, because Drak2 is required for the survival of autoreactive T cells that induce disease. However, the molecular mechanisms by which Drak2 affects T cell survival and autoimmunity are not known. A recent report demonstrated that Drak2 negatively regulated transforming growth factor-β (TGF-β) signaling in tumor cell lines. Thus, increased TGF-β signaling in the absence of Drak2 may contribute to the resistance to autoimmunity in Drak2-/- mice. Therefore, we examined if Drak2 functioned as a negative regulator of TGF-β signaling in T cells, and whether the enhanced susceptibility to death of Drak2-/- T cells was due to augmented TGF-β signaling. Using several in vitro assays to test TGF-β signaling and T cell function, we found that activation of Smad2 and Smad3, which are downstream of the TGF-β receptor, was similar between wildtype and Drak2-/- T cells. Furthermore, TGF-β-mediated effects on naïve T cell proliferation, activated CD8+ T cell survival, and regulatory T cell induction was similar between wildtype and Drak2-/- T cells. Finally, the increased susceptibility to death in the absence of Drak2 was not due to enhanced TGF-β signaling. Together, these data suggest that Drak2 does not function as a negative regulator of TGF-β signaling in primary T cells stimulated in vitro. It is important to investigate and discern potential molecular mechanisms by which Drak2 functions in order to better understand the etiology of autoimmune diseases, as well as to validate the use of Drak2 as a target for therapeutic treatment of these diseases.
Collapse
Affiliation(s)
- Tarsha L. Harris
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Gao LJ, Kovackova S, Sála M, Ramadori AT, De Jonghe S, Herdewijn P. Discovery of dual death-associated protein related apoptosis inducing protein kinase 1 and 2 inhibitors by a scaffold hopping approach. J Med Chem 2014; 57:7624-43. [PMID: 25178155 DOI: 10.1021/jm5007929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DRAK2 emerged as a promising drug target for the treatment of autoimmune diseases and to prevent graft rejection after organ transplantation. Screening of a compound library in a DRAK2 binding assay led to the identification of an isothiazolo[5,4-b]pyridine derivative as a novel ligand for DRAK2, displaying a Kd value of 1.6 μM. Subsequent medicinal chemistry work led to the discovery of a thieno[2,3-b]pyridine derivative with strong DRAK2 binding affinity (Kd = 9 nM). Moreover, this compound also behaves as a functional inhibitor of DRAK2 enzymatic activity, displaying an IC50 value of 0.82 μM, although lacking selectivity, when tested against DRAK1. This paper describes for the first time functionally active dual DRAK1 and DRAK2 inhibitors that can be used as starting point for the synthesis of chemical tool compounds to study DRAK1 and DRAK2 biology, or they can be considered as hit compounds for hit-to-lead optimization campaigns in drug discovery programs.
Collapse
Affiliation(s)
- Ling-Jie Gao
- Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, KU Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Leonczak P, Gao LJ, Ramadori AT, Lescrinier E, Rozenski J, De Jonghe S, Herdewijn P. Synthesis and structure-activity relationship studies of 2-(1,3,4-oxadiazole-2(3H)-thione)-3-amino-5-arylthieno[2,3-b]pyridines as inhibitors of DRAK2. ChemMedChem 2014; 9:2587-601. [PMID: 25146684 DOI: 10.1002/cmdc.201402234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 12/28/2022]
Abstract
In recent years, DAPK-related apoptosis-inducing protein kinase 2 (DRAK2) has emerged as a promising target for the treatment of a variety of autoimmune diseases and for the prevention of graft rejection after organ transplantation. However, medicinal chemistry optimization campaigns for the discovery of novel small-molecule inhibitors of DRAK2 have not yet been published. Screening of a proprietary compound library led to the discovery of a benzothiophene analogue that displays an affinity constant (Kd) value of 0.25 μM. Variation of the core scaffold and of the substitution pattern afforded a series of 5-arylthieno[2,3-b]pyridines with strong binding affinity (Kd = 0.008 μM for the most potent representative). These compounds also show promising activity in a functional biochemical DRAK2 enzyme assay, with an IC50 value of 0.029 μM for the most potent congener. Selectivity profiling of the most potent compounds revealed that they lack selectivity within the DAPK family of kinases. However, one of the less potent analogues is a selective ligand for DRAK2 and can be used as starting point for the synthesis of selective and potent DRAK2 inhibitors.
Collapse
Affiliation(s)
- Piotr Leonczak
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven (Belgium); KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven (Belgium)
| | | | | | | | | | | | | |
Collapse
|
19
|
Fracchia KM, Pai CY, Walsh CM. Modulation of T Cell Metabolism and Function through Calcium Signaling. Front Immunol 2013; 4:324. [PMID: 24133495 PMCID: PMC3795426 DOI: 10.3389/fimmu.2013.00324] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023] Open
Abstract
As a vital second messenger in the activation of lymphocytes, the divalent cation Ca(2+) plays numerous roles in adaptive immune responses. Importantly, Ca(2+) signaling is essential for T cell activation, tolerance of self-antigens, and homeostasis. Supporting the essential role of Ca(2+) signaling in T cell biology, the Ca(2+) regulated protein phosphatase calcineurin is a key target of pharmacologic inhibition for preventing allograft rejection and for autoimmune therapy. Recent studies have highlighted the unique role of Stim1 and Orai1/2 proteins in the regulation of store-operated/calcium release activated calcium (CRAC) channels in the context of T cells. While Ca(2+) is known to modulate T cell activation via effects on calcineurin and its target, nuclear factor of activated T cells (NFAT), this second messenger also regulates other pathways, including protein kinase C, calmodulin kinases, and cytoskeletal proteins. Ca(2+) also modulates the unique metabolic changes that occur during in distinct T cell stages and subsets. Herein, we discuss the means by which Ca(2+) mobilization modulates cellular metabolism following T cell receptor ligation. Further, we highlight the crosstalk between mitochondrial metabolism, reactive oxygen species (ROS) generation, and CRAC channel activity. As a target of mitochondrial ROS and Ca(2+) regulation, we describe the involvement of the serine/threonine kinase DRAK2 in the context of these processes. Given the important roles for Ca(2+) dependent signaling and cellular metabolism in adaptive immune responses, the crosstalk between these pathways is likely to be important for the regulation of T cell activation, tolerance, and homeostasis.
Collapse
Affiliation(s)
- Kelley M Fracchia
- Department of Molecular Biology and Biochemistry, The Institute for Immunology, University of California Irvine , Irvine, CA , USA
| | | | | |
Collapse
|
20
|
Ye P, Zhao L, Gonda TJ. The MYB oncogene can suppress apoptosis in acute myeloid leukemia cells by transcriptional repression of DRAK2 expression. Leuk Res 2013; 37:595-601. [PMID: 23398943 DOI: 10.1016/j.leukres.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
RNA interference-mediated suppression of MYB expression promoted apoptosis in the AML cell line U937, without affecting expression of the anti-apoptotic MYB target BCL2. This was accompanied by up-regulation of the pro-apoptotic gene DRAK2 and stimulation of caspase-9 activity. Moreover, RNA interference-mediated suppression of DRAK2 in U937 cells alleviated apoptosis induced by MYB down-regulation. Finally ChIP assays showed that in U937 cells MYB binds to a conserved element upstream of the DRAK2 transcription start site. Together, these findings identify a novel mechanism by which MYB suppresses apoptosis in an AML model cell line.
Collapse
Affiliation(s)
- Ping Ye
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
21
|
Yang KM, Kim W, Bae E, Gim J, Weist BM, Jung Y, Hyun JS, Hernandez JB, Leem SH, Park T, Jeong J, Walsh CM, Kim SJ. DRAK2 participates in a negative feedback loop to control TGF-β/Smads signaling by binding to type I TGF-β receptor. Cell Rep 2012; 2:1286-99. [PMID: 23122956 DOI: 10.1016/j.celrep.2012.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/17/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022] Open
Abstract
TGF-β1 is a multifunctional cytokine that mediates diverse biological processes. However, the mechanisms by which the intracellular signals of TGF-β1 are terminated are not well understood. Here, we demonstrate that DRAK2 serves as a TGF-β1-inducible antagonist of TGF-β signaling. TGF-β1 stimulation rapidly induces DRAK2 expression and enhances endogenous interaction of the type I TGF-β receptor with DRAK2, thereby blocking R-Smads recruitment. Depletion of DRAK2 expression markedly augmented the intensity and the extent of TGF-β1 responses. Furthermore, a high level of DRAK2 expression was observed in basal-like and HER2-enriched breast tumors and cell lines, and depletion of DRAK2 expression suppressed the tumorigenic ability of breast cancer cells. Thus, these studies define a function for DRAK2 as an intrinsic intracellular antagonist participating in the negative feedback loop to control TGF-β1 responses, and aberrant expression of DRAK2 increases tumorigenic potential, in part, through the inhibition of TGF-β1 tumor suppressor activity.
Collapse
Affiliation(s)
- Kyung-Min Yang
- CHA Cancer Institute, CHA University of Medicine and Science, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Weist BM, Hernandez JB, Walsh CM. Loss of DRAK2 signaling enhances allogeneic transplant survival by limiting effector and memory T cell responses. Am J Transplant 2012; 12:2220-7. [PMID: 22494341 PMCID: PMC3396732 DOI: 10.1111/j.1600-6143.2012.04056.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we demonstrate that loss of DRAK2 signaling significantly promotes the acceptance of allogeneic engraftment in two separate transplant models without promoting generalized immunosuppression. Drak2-/- T cells failed to reject allogeneic tumors, and were defective in rejecting Balb/C allogeneic skin grafts on C57BL6/J recipients. A significant fraction of alloreactive Drak2-/- T cells underwent apoptosis following activation, whereas enforced expression of Bcl-xL in Drak2-/- T cells restored allograft rejection. Formation of allogeneic memory was also greatly hampered in T cells lacking the Drak2 gene. Adoptive transfer of memory T cells from Drak2-/- mice failed to promote the rejection of allogeneic tumors, and such cells led to significantly delayed rejection of skin allografts in the Balb/C->C57BL/6J model. Costimulatory blockade by in vivo administration of Cytotoxic T-Lymphocyte Antigen 4 fusion protein (CTLA4-Ig) synergized with the DRAK2 deficiency and led to long-term allogeneic skin graft acceptance. Overall, these results demonstrate that DRAK2 plays an important role in primary and memory T cell responsiveness to allografts. Because previous studies have demonstrated that a loss of DRAK2 does not negatively impact antiviral immunity, the studies here underscore the potential utility of pharmacological blockade of DRAK2 to achieve transplant maintenance without the imposition of generalized immunosuppression.
Collapse
Affiliation(s)
- Brian M. Weist
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900
- Institute for Immunology, University of California, Irvine, California 92697
| | - Jeniffer B. Hernandez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900
- Institute for Immunology, University of California, Irvine, California 92697
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900
- Institute for Immunology, University of California, Irvine, California 92697
| |
Collapse
|
23
|
Newton RH, Leverrier S, Srikanth S, Gwack Y, Cahalan MD, Walsh CM. Protein kinase D orchestrates the activation of DRAK2 in response to TCR-induced Ca2+ influx and mitochondrial reactive oxygen generation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:940-50. [PMID: 21148796 PMCID: PMC3133617 DOI: 10.4049/jimmunol.1000942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DRAK2 is a serine/threonine kinase highly enriched in lymphocytes that raises the threshold for T cell activation and maintains T cell survival following productive activation. T cells lacking DRAK2 are prone to activation under suboptimal conditions and exhibit enhanced calcium responses to AgR stimulation. Despite this, mice lacking DRAK2 are resistant to organ-specific autoimmune diseases due to defective autoreactive T cell survival. DRAK2 kinase activity is induced by AgR signaling, and in this study we show that the induction of DRAK2 activity requires Ca(2+) influx through the Ca(2+) release-activated Ca(2+) channel formed from Orai1 subunits. Blockade of DRAK2 activity with the protein kinase D (PKD) inhibitor Gö6976 or expression of a kinase-dead PKD mutant prevented activation of DRAK2, whereas a constitutively active PKD mutant promoted DRAK2 function. Knockdown of PKD in T cells strongly blocked endogenous DRAK2 activation following TCR ligation, implicating PKD as an essential intermediate in the activation of DRAK2 by Ca(2+) influx. Furthermore, we identify DRAK2 as a novel substrate of PKD, and demonstrate that DRAK2 and PKD physically interact under conditions that activate PKD. Mitochondrial generation of reactive oxygen intermediates was necessary and sufficient for DRAK2 activation in response to Ca(2+) influx. Taken together, DRAK2 and PKD form a novel signaling module that controls calcium homeostasis following T cell activation.
Collapse
Affiliation(s)
- Ryan H. Newton
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Sabrina Leverrier
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael D. Cahalan
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Craig M. Walsh
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
24
|
Abstract
IMPORTANCE OF THE FIELD Inflammatory diseases are one of the major health issues and have become a major focus in the pharmaceutical and biotech industries. To date, drugs prescribed for treatment of these diseases target enzymes that are not specific to the immune system resulting in adverse effects. The main challenge of this research field is, therefore, identifying targets that act specifically on the diseased tissue. AREAS COVERED IN THIS REVIEW This review summarizes drug discovery efforts on kinases that have been identified as key players mediating inflammation and autoimmune disorders. In particular, we discuss recent developments on well-established targets such as mammalian target of rapamycin, JAK3, spleen tyrosine kinase, p38α and lymphocyte specific kinase but provide also a perspective on emerging targets. WHAT THE READER WILL GAIN The reader will obtain an overview of drug discovery efforts on kinases in inflammation, recent clinical and preclinical data and developed inhibitor scaffolds. In addition, the reader will be updated on issues in target validation of current drug targets and the potential of selected novel kinase targets in this important disease area. TAKE HOME MESSAGE Cellular signaling networks that regulate inflammatory response are still poorly understood making rational selection of targets challenging. Recent data suggest that kinase targets that are specific to the immune system and mediate signals immediately downstream of surface receptors are most efficacious in the clinic.
Collapse
Affiliation(s)
- Susanne Müller
- University of Oxford, Structural Genomics Consortium (SGC), Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, UK + 44 1865 617584 ; + 44 1865 617575 ;
| | | |
Collapse
|
25
|
Abstract
Among the numerous consequences of globalization, the dissemination of scientific research allows real-time comparisons of clinical and basic experimental data between different geographical areas. As a result, the field of geoepidemiology is now vigorously supported by multiple lines of evidence. This special issue of Autoimmunity Reviews is dedicated to the 2010 International Congress on Autoimmunity and aims to provide a state-of-the-art representation of what is currently known in the field of geoepidemiology for autoimmune diseases. The obvious implications of these observations is a role for environmental factors. We will herein review selected publications from prominent scientific journals to provide the bases to understand some of the lines of evidence proposed in the subsequent papers of this comprehensive volume. The ultimate goal is thus to define whether geoepidemiology should be considered a new challenge for autoimmunologists.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Internal Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy.
| |
Collapse
|
26
|
Gatzka M, Newton RH, Walsh CM. Altered thymic selection and increased autoimmunity caused by ectopic expression of DRAK2 during T cell development. THE JOURNAL OF IMMUNOLOGY 2009; 183:285-97. [PMID: 19542440 DOI: 10.4049/jimmunol.0803530] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Negative regulation of TCR signaling is an important mechanism enforcing immunological self-tolerance to prevent inappropriate activation of T cells and thus the development of autoimmune diseases. The lymphoid-restricted serine/threonine kinase death-associated protein-related apoptotic kinase-2 (DRAK2) raises the TCR activation threshold by targeting TCR-induced calcium mobilization in thymocytes and peripheral T cells and regulates positive thymic selection and peripheral T cell activation. Despite a hypersensitivity of peripheral drak2-deficient T cells, drak2-deficient mice are enigmatically resistant to induced autoimmunity in the model experimental autoimmune encephalomyelitis. To further evaluate the differential role of DRAK2 in central vs peripheral tolerance and to assess its impact on the development of autoimmune diseases, we have generated a transgenic (Tg) mouse strain ectopically expressing DRAK2 via the lck proximal promoter (1017-DRAK2 Tg mice). This transgene led to highest expression levels in double-positive thymocytes that are normally devoid of DRAK2. 1017-DRAK2 Tg mice displayed a reduction of single-positive CD4(+) and CD8(+) thymocytes in context with diminished negative selection in male HY TCR x 1017-DRAK2 Tg mice as well as peripheral T cell hypersensitivity, enhanced susceptibility to experimental autoimmune encephalomyelitis, and spontaneous autoimmunity. These findings suggest that alteration in thymocyte signaling thresholds impacts the sensitivity of peripheral T cell pools.
Collapse
Affiliation(s)
- Martina Gatzka
- Department of Molecular Biology and Biochemistry/Institute for Immunology, University of California, Irvine, 92697, USA
| | | | | |
Collapse
|