1
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
2
|
von Beek C, Fahlgren A, Geiser P, Di Martino ML, Lindahl O, Prensa GI, Mendez-Enriquez E, Eriksson J, Hallgren J, Fällman M, Pejler G, Sellin ME. A two-step activation mechanism enables mast cells to differentiate their response between extracellular and invasive enterobacterial infection. Nat Commun 2024; 15:904. [PMID: 38291037 PMCID: PMC10828507 DOI: 10.1038/s41467-024-45057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.
Collapse
Affiliation(s)
- Christopher von Beek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Otto Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Grisna I Prensa
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
3
|
Palma AM, Hanes MR, Marshall JS. Mast Cell Modulation of B Cell Responses: An Under-Appreciated Partnership in Host Defence. Front Immunol 2021; 12:718499. [PMID: 34566974 PMCID: PMC8460918 DOI: 10.3389/fimmu.2021.718499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Mast cells are well known to be activated via cross-linking of immunoglobulins bound to surface receptors. They are also recognized as key initiators and regulators of both innate and adaptive immune responses against pathogens, especially in the skin and mucosal surfaces. Substantial attention has been given to the role of mast cells in regulating T cell function either directly or indirectly through actions on dendritic cells. In contrast, the ability of mast cells to modify B cell responses has been less explored. Several lines of evidence suggest that mast cells can greatly modify B cell generation and activities. Mast cells co-localise with B cells in many tissue settings and produce substantial amounts of cytokines, such as IL-6, with profound impacts on B cell development, class-switch recombination events, and subsequent antibody production. Mast cells have also been suggested to modulate the development and functions of regulatory B cells. In this review, we discuss the critical impacts of mast cells on B cells using information from both clinical and laboratory studies and consider the implications of these findings on the host response to infections.
Collapse
Affiliation(s)
- Alejandro M Palma
- IWK Health Centre and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Mark R Hanes
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Draberova L, Tumova M, Draber P. Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Front Immunol 2021; 12:670205. [PMID: 34248949 PMCID: PMC8260682 DOI: 10.3389/fimmu.2021.670205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magda Tumova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Soria-Castro R, Alfaro-Doblado ÁR, Rodríguez-López G, Campillo-Navarro M, Meneses-Preza YG, Galán-Salinas A, Alvarez-Jimenez V, Yam-Puc JC, Munguía-Fuentes R, Domínguez-Flores A, Estrada-Parra S, Pérez-Tapia SM, Chávez-Blanco AD, Chacón-Salinas R. TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Front Immunol 2021; 12:650779. [PMID: 34194428 PMCID: PMC8238461 DOI: 10.3389/fimmu.2021.650779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1β, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Ángel R. Alfaro-Doblado
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Gloria Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Research Coordination, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Yatsiri G. Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Violeta Alvarez-Jimenez
- Unidad de Citometría de Flujo, Lab de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval, Secretaría de Marina (SEMAR), Mexico City, Mexico
| | - Juan C. Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosario Munguía-Fuentes
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City, Mexico
| | - Adriana Domínguez-Flores
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Alma D. Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| |
Collapse
|
6
|
Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle. Sci Rep 2020; 10:21535. [PMID: 33299023 PMCID: PMC7726576 DOI: 10.1038/s41598-020-78752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
The zoonotic enterohemorrhagic Escherichia coli (EHEC) O157: H7 bacterium causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) in humans. Cattle are primary reservoirs and EHEC O157: H7; the bacteria predominately inhabit the colon and recto-anal junctions (RAJ). The early innate immune reactions in the infected gut are critical in the pathogenesis of EHEC O157: H7. In this study, calves orally inoculated with EHEC O157: H7 showed infiltration of neutrophils in the lamina propria of ileum and RAJ at 7 and 14 days post-infection. Infected calves had altered mucin layer and mast cell populations across small and large intestines. There were differential transcription expressions of key bovine β defensins, tracheal antimicrobial peptide (TAP) in the ileum, and lingual antimicrobial peptide (LAP) in RAJ. The main Gram-negative bacterial/LPS signaling Toll-Like receptor 4 (TLR4) was downregulated in RAJ. Intestinal infection with EHEC O157: H7 impacted the gut bacterial communities and influenced the relative abundance of Negativibacillus and Erysipelotrichaceae in mucosa-associated bacteria in the rectum. Thus, innate immunity in the gut of calves showed unique characteristics during infection with EHEC O157: H7, which occurred in the absence of major clinical manifestations but denoted an active immunological niche.
Collapse
|
7
|
Romp E, Arakandy V, Fischer J, Wolz C, Siegmund A, Löffler B, Tuchscherr L, Werz O, Garscha U. Exotoxins from Staphylococcus aureus activate 5-lipoxygenase and induce leukotriene biosynthesis. Cell Mol Life Sci 2020; 77:3841-3858. [PMID: 31807813 PMCID: PMC11105070 DOI: 10.1007/s00018-019-03393-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022]
Abstract
Massive neutrophil infiltration is an early key event in infectious inflammation, accompanied by chemotactic leukotriene (LT)B4 generation. LTB4 biosynthesis is mediated by 5-lipoxygenase (5-LOX), but which pathogenic factors cause 5-LOX activation during bacterial infections is elusive. Here, we reveal staphylococcal exotoxins as 5-LOX activators. Conditioned medium of wild-type Staphylococcus aureus but not of exotoxin-deficient strains induced 5-LOX activation in transfected HEK293 cells. Two different staphylococcal exotoxins mimicked the effects of S. aureus-conditioned medium: (1) the pore-forming toxin α-hemolysin and (2) amphipathic α-helical phenol-soluble modulin (PSM) peptides. Interestingly, in human neutrophils, 5-LOX activation was exclusively evoked by PSMs, which was prevented by the selective FPR2/ALX receptor antagonist WRW4. 5-LOX activation by PSMs was confirmed in vivo as LT formation in infected paws of mice was impaired in response to PSM-deficient S. aureus. Conclusively, exotoxins from S. aureus are potent pathogenic factors that activate 5-LOX and induce LT formation in neutrophils.
Collapse
Affiliation(s)
- Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Vandana Arakandy
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, 72076, Tuebingen, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital Jena, 07747, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany.
| |
Collapse
|
8
|
Garcia-Rodriguez KM, Bahri R, Sattentau C, Roberts IS, Goenka A, Bulfone-Paus S. Human mast cells exhibit an individualized pattern of antimicrobial responses. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:198-210. [PMID: 32222064 PMCID: PMC7212193 DOI: 10.1002/iid3.295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Introduction Mast cells (MCs) are tissue‐resident immune cells implicated in antibacterial responses. These include chemokine secretion, degranulation, and the release of mast cell‐extracellular traps, which are primarily dependent on reactive oxygen species (ROS) production. Our study investigated whether human mast cells (hMCs) develop individual response patterns to bacteria located at different tissue sites: Escherichia coli (gut commensal), Listeria monocytogenes (foodborne intracellular pathogen), Staphylococcus aureus (skin commensal and opportunistic pathogen), and Streptococcus pneumoniae (upper respiratory tract commensal and lung pathogen). Methods After live bacteria exposure, hMCs were analyzed by a combined flow cytometry assay for degranulation, ROS production, DNA externalization, and for β‐hexosaminidase, chemokine, and prostaglandin release. Results L. monocytogenes induced hMC degranulation, IL‐8 and MCP‐1 release coupled with DNA externalization in a novel hMC ROS independent manner. In contrast, S. pneumoniae caused ROS production without DNA release and degranulation. E. coli induced low levels of hMC degranulation combined with interleukin 8 and MCP‐1 secretion and in the absence of ROS and DNA externalization. Finally, S. aureus induced hMCs prostaglandin D2 release and DNA release selectively. Our findings demonstrate a novel hMC phenomenon of DNA externalization independent of ROS production. We also showed that ROS production, degranulation, DNA externalization, and mediator secretion occur as independent immune reactions in hMCs upon bacterial encounter and that hMCs contribute to bacterial clearance. Conclusions Thus, hMCs exhibit a highly individualized pattern of immune response possibly to meet tissue requirements and regulate bacteria coexistence vs defense.
Collapse
Affiliation(s)
- Karen M Garcia-Rodriguez
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, UK
| | - Rajia Bahri
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Clara Sattentau
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ian S Roberts
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Anu Goenka
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Silvia Bulfone-Paus
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
von Beek C, Waern I, Eriksson J, Melo FR, Robinson C, Waller AS, Sellin ME, Guss B, Pejler G. Streptococcal sagA activates a proinflammatory response in mast cells by a sublytic mechanism. Cell Microbiol 2019; 21:e13064. [PMID: 31155820 PMCID: PMC6771685 DOI: 10.1111/cmi.13064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/10/2019] [Accepted: 05/26/2019] [Indexed: 01/21/2023]
Abstract
Mast cells are implicated in the innate proinflammatory immune defence against bacterial insult, but the mechanisms through which mast cells respond to bacterial encounter are poorly defined. Here, we addressed this issue and show that mast cells respond vividly to wild type Streptococcus equi by up‐regulating a panel of proinflammatory genes and by secreting proinflammatory cytokines. However, this response was completely abrogated when the bacteria lacked expression of sagA, whereas the lack of a range of other potential virulence genes (seeH, seeI, seeL, seeM, hasA, seM, aroB, pyrC, and recA) had no effect on the amplitude of the mast cell responses. The sagA gene encodes streptolysin S, a lytic toxin, and we next showed that the wild type strain but not a sagA‐deficient mutant induced lysis of mast cells. To investigate whether host cell membrane perturbation per se could play a role in the activation of the proinflammatory response, we evaluated the effects of detergent‐ and pneumolysin‐dependent lysis on mast cells. Indeed, exposure of mast cells to sublytic concentrations of all these agents resulted in cytokine responses of similar amplitudes as those caused by wild type streptococci. This suggests that sublytic membrane perturbation is sufficient to trigger full‐blown proinflammatory signalling in mast cells. Subsequent analysis showed that the p38 and Erk1/2 signalling pathways had central roles in the proinflammatory response of mast cells challenged by either sagA‐expressing streptococci or detergent. Altogether, these findings suggest that sagA‐dependent mast cell membrane perturbation is a mechanism capable of activating the innate immune response upon bacterial challenge.
Collapse
Affiliation(s)
- Christopher von Beek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl Robinson
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Andrew S Waller
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Exeni RA, Fernandez-Brando RJ, Santiago AP, Fiorentino GA, Exeni AM, Ramos MV, Palermo MS. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2018; 33:2057-2071. [PMID: 29372302 DOI: 10.1007/s00467-017-3876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.
Collapse
Affiliation(s)
- Ramon Alfonso Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Patricia Santiago
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Gabriela Alejandra Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Andrea Mariana Exeni
- Servicio de Nefrología, Hospital Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Maria Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Sato H, Zhang LS, Martinez K, Chang EB, Yang Q, Wang F, Howles PN, Hokari R, Miura S, Tso P. Antibiotics Suppress Activation of Intestinal Mucosal Mast Cells and Reduce Dietary Lipid Absorption in Sprague-Dawley Rats. Gastroenterology 2016; 151:923-932. [PMID: 27436071 PMCID: PMC5391873 DOI: 10.1053/j.gastro.2016.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. METHODS Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. RESULTS Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. CONCLUSIONS The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons.
Collapse
Affiliation(s)
- Hirokazu Sato
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Linda S Zhang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristina Martinez
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Philip N Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Soichiro Miura
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
13
|
Human Lactobacillus Strains from the Intestine can Suppress IgE-Mediated Degranulation of Rat Basophilic Leukaemia (RBL-2H3) Cells. Microorganisms 2016; 4:microorganisms4040040. [PMID: 27801804 PMCID: PMC5192523 DOI: 10.3390/microorganisms4040040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Mast cells play a critical role in immunoglobulin E (IgE)-mediated allergic diseases, and the degranulation of mast cells is important in the pathogenesis of these diseases. A disturbance of the intestinal microflora, especially of endogenous lactic acid bacteria, might be a contributing factor for IgE-mediated allergic diseases. Additional knowledge regarding the interaction of human intestinal Lactobacilli with mast cells is still necessary. Twenty-three strains of Lactobacilli, including commercial and reference strains and strains from the human intestine, were tested for their ability to regulate degranulation of cells from rat basophilic leukemia RBL-2H3 cells (RBL-2H3) in vitro based on a β-hexosaminidase release assay. Each of the tested Lactobacilli characteristically suppressed IgE-mediated degranulation of RBL-2H3 cells, and Lactobacillus GG showed the strongest inhibitory effect on the cells. Furthermore, the bacteria isolated from the human intestine significantly suppressed degranulation of RBL-2H3 cellsin comparison with the reference strains. These results suggest that Lactobacilli, particularly those from the human intestine, can affect the activation of mast cells in a strain-dependent manner. Further study should be conducted to analyse the understanding mechanism.
Collapse
|
14
|
Johnzon CF, Rönnberg E, Pejler G. The Role of Mast Cells in Bacterial Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:4-14. [DOI: 10.1016/j.ajpath.2015.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 01/21/2023]
|
15
|
Cabrera G, Fernández-Brando RJ, Mejías MP, Ramos MV, Abrey-Recalde MJ, Vanzulli S, Vermeulen M, Palermo MS. Leukotriene C4 increases the susceptibility of adult mice to Shiga toxin-producing Escherichia coli infection. Int J Med Microbiol 2015; 305:910-7. [PMID: 26456732 DOI: 10.1016/j.ijmm.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes hemorrhagic colitis. Under some circumstances, Shiga toxin (Stx) produced within the intestinal tract enters the bloodstream, leading to systemic complications that may cause the potentially fatal hemolytic-uremic syndrome (HUS). Despite STEC human infection is characterized by acute inflammation of the colonic mucosa, little is known regarding the role of proinflammatory mediators like cysteine leukotrienes (cysLTs) in this pathology. Thus, the aim of this work was to analyze whether leukotriene C4 (LTC4) influences STEC pathogenesis in mice. We report that exogenous LTC4 pretreatment severely affected the outcome of STEC gastrointestinal infection. LTC4-pretreated (LTC4+) and STEC-infected (STEC+) mice showed an increased intestinal damage by histological studies, and a decreased survival compared to LTC4-non-pretreated (LTC4-) and STEC+ mice. LTC4+/STEC+ mice that died after the infection displayed neutrophilia and high urea levels, indicating that the cause of death was related to Stx2-toxicity. Despite the differences observed in the survival between LTC4+ and LTC4- mice after STEC infection, both groups showed the same survival after Stx2-intravenous inoculation. In addition, LTC4 pretreatment increased the permeability of mucosal intestinal barrier, as assessed by FITC-dextran absorption experiments. Altogether these results suggest that LTC4 detrimental effect on STEC infection is related to the increased passage of pathogenic factors to the bloodstream. Finally, we showed that STEC infection per se increases the endogenous LTC4 levels in the gut, suggesting that this inflammatory mediator plays a role in the pathogenicity of STEC infection in mice, mainly by disrupting the mucosal epithelial barrier.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - Romina J Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Pilar Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Jimena Abrey-Recalde
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Departamento de Patología, Centro de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
16
|
Brenner SA, Zacheja S, Schäffer M, Feilhauer K, Bischoff SC, Lorentz A. Soluble CD14 is essential for lipopolysaccharide-dependent activation of human intestinal mast cells from macroscopically normal as well as Crohn's disease tissue. Immunology 2014; 143:174-83. [PMID: 24697307 DOI: 10.1111/imm.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells are now considered sentinels in immunity. Given their location underneath the gastrointestinal barrier, mast cells are entrusted with the task of tolerating commensal microorganisms and eliminating potential pathogens in the gut microbiota. The aim of our study was to analyse the responsiveness of mast cells isolated from macroscopically normal and Crohn's disease-affected intestine to lipopolysaccharide (LPS). To determine the LPS-mediated signalling, human intestinal mast cells were treated with LPS alone or in combination with soluble CD14 due to their lack of surface CD14 expression. LPS alone failed to stimulate cytokine expression in human intestinal mast cells from both macroscopically normal and Crohn's disease tissue. Upon administration of LPS and soluble CD14, there was a dose- and time-dependent induction of cytokine and chemokine expression. Moreover, CXCL8 and interleukin-1β protein expression was induced in response to activation with LPS plus soluble CD14. Expression of cytokines and chemokines was at similar levels in mast cells from macroscopically normal and Crohn's disease-affected intestine after LPS/soluble CD14 treatment. In conclusion, human intestinal mast cells appear to tolerate LPS per se. The LPS-mediated activation in mast cells may be provoked by soluble CD14 distributed by other LPS-triggered cells at the gastrointestinal barrier.
Collapse
Affiliation(s)
- Sibylle A Brenner
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Fukuishi N, Murakami S, Ohno A, Yamanaka N, Matsui N, Fukutsuji K, Yamada S, Itoh K, Akagi M. Does β-hexosaminidase function only as a degranulation indicator in mast cells? The primary role of β-hexosaminidase in mast cell granules. THE JOURNAL OF IMMUNOLOGY 2014; 193:1886-94. [PMID: 25015817 DOI: 10.4049/jimmunol.1302520] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
β-Hexosaminidase, which is generally present in the lysosome, is essential for glycoprotein metabolism in the maintenance of cell homeostasis. In mast cells (MCs), large amounts of β-hexosaminidase are present in the granules as opposed to the lysosome, and the biological role of MC β-hexosaminidase has yet to be fully elucidated. Therefore, we investigated the biological role of β-hexosaminidase in MC granules. Bone marrow-derived MCs from C57BL/6 (BL/6-BMMC) or β-hexosaminidase gene-deficient (hexb(-/-)-BMMC) mice were transplanted into MC-deficient (WBB6F1/J-Kit(W)/Kit(W-v) [W/W(v)]) mice to generate MC-reconstituted models. In asthma model experiments, no differences were observed in the symptoms of BL/6, W/W(v), BL/6-BMMC-reconstituted W/W(v), or hexb(-/-)-BMMC-reconstituted W/W(v) mice. In Staphylococcus epidermidis experimental infection model experiments, the severity of symptoms and frequency of death were markedly higher in W/W(v) and hexb(-/-)-BMMC-reconstituted W/W(v) mice than in BL/6 and BL/6-BMMC-reconstituted W/W(v) mice. The growth of S. epidermidis in an in vitro study was clearly inhibited by addition of BL/6-BMMC lysate, but not by addition of hexb(-/-)-BMMC lysate. Moreover, suppression of bacterial proliferation was completely recovered when bacteria were incubated with hexb(-/-)-BMMC lysate plus β-hexosaminidase. Transmission electron microscopy indicated that the cell wall of S. epidermidis was heavily degraded following coincubation of bacteria with BL/6-BMMC lysate, but not following coincubation with hexb(-/-)-BMMC lysate. These findings strongly suggest that MC granule β-hexosaminidase is crucial for defense against bacterial invasion, but is not involved in the allergic response. Our results also suggest that the bactericidal mechanism of β-hexosaminidase involves degradation of bacterial cell wall peptidoglycan.
Collapse
Affiliation(s)
- Nobuyuki Fukuishi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan;
| | - Shinya Murakami
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - Akane Ohno
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - Naoya Yamanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - Nobuaki Matsui
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - Kenji Fukutsuji
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; and
| | - Sakuo Yamada
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; and
| | - Kouji Itoh
- Department of Medicinal Biotechnology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Masaaki Akagi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| |
Collapse
|
18
|
de Haan JJ, Hadfoune M, Lubbers T, Hodin C, Lenaerts K, Ito A, Verbaeys I, Skynner MJ, Cailotto C, van der Vliet J, de Jonge WJ, Greve JWM, Buurman WA. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am J Physiol Gastrointest Liver Physiol 2013; 305:G383-91. [PMID: 23812038 DOI: 10.1152/ajpgi.00333.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of mucosal mast cells is a potential therapeutic target to control the acute inflammatory response in the intestine. The present study investigates intestinal mast cell responsiveness upon nutritional activation of the vagal anti-inflammatory reflex during acute inflammation. Mucosal mast cell degranulation was induced in C57/Bl6 mice by administration of Salmonella enterica LPS. Lipid-rich enteral feeding prior to LPS significantly decreased circulatory levels of mouse mast cell protease at 30 min post-LPS compared with isocaloric low-lipid nutrition or fasting. CCK-1R blockage reversed the inhibitory effects of lipid-rich feeding, whereas stimulation of the peripheral CCK-1R mimicked nutritional mast cell inhibition. The effects of lipid-rich nutrition were negated by nAChR blockers chlorisondamine and α-bungarotoxin and vagal intestinal denervation. Accordingly, release of β-hexosaminidase by MC/9 mast cells following LPS or IgE-ovalbumin complexes was dose dependently inhibited by acetylcholine and nicotine. Application of GSK1345038A, a specific agonist of the nAChR α7, in bone marrow-derived mast cells from nAChR β2-/- and wild types indicated that cholinergic inhibition of mast cells is mediated by the nAChR α7 and is independent of the nAChR β2. Together, the present study reveals mucosal mast cells as a previously unknown target of the nutritional anti-inflammatory vagal reflex.
Collapse
Affiliation(s)
- Jacco J de Haan
- Dept. of Surgery at Maastricht Univ. Medical Centre+, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
20
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Abstract
'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr 12, Stuttgart D 70599, Germany.
| |
Collapse
|
22
|
Kubota A, He F, Kawase M, Harata G, Hiramatsu M, Iino H. Diversity of intestinal bifidobacteria in patients with Japanese cedar pollinosis and possible influence of probiotic intervention. Curr Microbiol 2010; 62:71-7. [PMID: 20512497 DOI: 10.1007/s00284-010-9667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
This study was conducted to evaluate the potential association between intestinal bifidobacteria and Japanese cedar pollinosis (JCPsis) and possible influences of probiotic intervention. In this study, fecal samples were the collected from 29 JCPsis patients. The qualitative and quantitative analyses of fecal bifidobacteria were conducted by quantitative real-time PCR with 16S rRNA-gene-targeted species-specific primers before cedar pollen spread and after a 10-week intervention with fermented milk prepared with Lactobacillus GG and L. gasseri TMC0356 during pollen spread. Each JCPsis patient had a unique diversity of bifidobacteria, which varied qualitatively and quantitatively in an individual-dependent manner during pollen spread. The serum IgE concentration of JCPsis patients with more than 3 detectable Bifidobacterium species was significantly lower than that of patients with less than 2 detected species. The prevalence of B. adolescentis, B. longum, and B. catenulatum increased after probiotic intervention, although the changes were not statistically significant. These results suggest that lower diversity of intestinal Bifidobacterium species might be a pathological aspect of JCPsis. The diversity of intestinal bifidobacteria could be a prospective target for using probiotics in the management of IgE-mediated allergic disorders including JCPsis.
Collapse
Affiliation(s)
- Akira Kubota
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa, 241-0023, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Harata G, He F, Takahashi K, Hosono A, Kawase M, Kubota A, Hiramatsu M, Kaminogawa S. Bifidobacterium suppresses IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. Microbiol Immunol 2010; 54:54-7. [PMID: 20055943 DOI: 10.1111/j.1348-0421.2009.00185.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sixteen heat-killed bifidobacteria isolated from human intestine and a probiotic strain Lactobacillus GG were tested for their ability to influence IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells in vitro. The bifidobacteria suppressed IgE-mediated degranulation of RBL-2H3 cells by 1.6-56.4% in a strain-dependent manner. Bifidobacteria from healthy infants expressed high inhibitory effects on IgE-mediated degranulation (41-55%), while those from allergic infants varied greatly in their effects against degranulation. Bifidobacteria taxonomically identified as Bifidobacterium bifidum exhibited much stronger inhibitory effects against IgE-mediated degranulation than those taxonomically identified as B. adolescentis (P < 0.05).These results indicate that the intestinal bifidobacteria might be one of factors influencing IgE-mediated allergic responses.
Collapse
Affiliation(s)
- Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co. Ltd., 5 Honjyuku-cho, Asahi-ku, Yokohama, Kanagawa 241-0023, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sonnenborn U, Schulze J. The non-pathogenicEscherichia colistrain Nissle 1917 – features of a versatile probiotic. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910600903444267] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jürgen Schulze
- Department of Medicine, Ardeypharm GmbH, Herdecke, Germany
- *Present address: Alice-Bloch-Str. 7, D-14558 Nuthetal, Germany
| |
Collapse
|
25
|
Protease-activated receptor 2 has pivotal roles in cellular mechanisms involved in experimental periodontitis. Infect Immun 2009; 78:629-38. [PMID: 19933835 DOI: 10.1128/iai.01019-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tissue destruction seen in chronic periodontitis is commonly accepted to involve extensive upregulation of the host inflammatory response. Protease-activated receptor 2 (PAR-2)-null mice infected with Porphyromonas gingivalis did not display periodontal bone resorption in contrast to wild-type-infected and PAR-1-null-infected mice. Histological examination of tissues confirmed the lowered bone resorption in PAR-2-null mice and identified a substantial decrease in mast cells infiltrating the periodontal tissues of these mice. T cells from P. gingivalis-infected or immunized PAR-2-null mice proliferated less in response to antigen than those from wild-type animals. CD90 (Thy1.2) expression on CD4(+) and CD8(+) T-cell-receptor beta (TCRbeta) T cells was significantly (P < 0.001) decreased in antigen-immunized PAR-2-null mice compared to sham-immunized PAR-2-null mice; this was not observed in wild-type controls. T cells from infected or antigen-immunized PAR-2-null mice had a significantly different Th1/inflammatory cytokine profile from wild-type cells: in particular, gamma interferon, interleukins (interleukin-2, -3, and -17), granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha demonstrated lower expression than wild-type controls. The absence of PAR-2 therefore appears to substantially decrease T-cell activation and the Th1/inflammatory response. Regulation of such proinflammatory mechanisms in T cells and mast cells by PAR-2 suggests a pivotal role in the pathogenesis of the disease.
Collapse
|
26
|
Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 2009; 31:185-205. [PMID: 19533134 DOI: 10.1007/s00281-009-0165-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/25/2009] [Indexed: 12/16/2022]
Abstract
The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2-3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce allergy once they are sensitized against foreign antigens. The broad spectrum of functions makes mast cells a fascinating target for future pharmacological or nutritional interventions.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine & Immunology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
27
|
Kyriakidis DA, Tiligada E. Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids 2009; 37:443-58. [PMID: 19198978 DOI: 10.1007/s00726-009-0241-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/12/2009] [Indexed: 02/07/2023]
Abstract
Adaptive signal transduction within microbial cells involves a multi-faceted regulated phosphotransfer mechanism that comprises structural rearrangements of sensor histidine kinases upon ligand-binding and phosphorylation-induced conformational changes in response regulators of versatile two-component systems (TCS), arisen early in bacterial evolution. In Escherichia coli, cross-talk between the AtoS histidine kinase and the AtoC response regulator, forming the AtoSC TCS, through His --> Asp phosphotransfer, activates AtoC directly to induce atoDAEB operon expression, thus modulating diverse fundamental cellular processes such as short-chain fatty acid catabolism, poly-(R)-3-hydroxybutyrate biosynthesis and chemotaxis. Among the inducers hitherto identified, acetoacetate is the classical activator. The AtoSC TCS functional modulation by polyamines, histamine and Ca(2+), as well as the role of AtoC as transcriptional regulator, add new promising perspectives in the physiological significance and potential pharmacological exploitation of this TCS in cell proliferation, bacteria-host interactions, chemotaxis, and adaptation.
Collapse
|