1
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
2
|
Kotsari M, Dimopoulou V, Koskinas J, Armakolas A. Immune System and Hepatocellular Carcinoma (HCC): New Insights into HCC Progression. Int J Mol Sci 2023; 24:11471. [PMID: 37511228 PMCID: PMC10380581 DOI: 10.3390/ijms241411471] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
According to the WHO's recently released worldwide cancer data for 2020, liver cancer ranks sixth in morbidity and third in mortality among all malignancies. Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts approximately for 80% of all primary liver malignancies and is one of the leading causes of death globally. The intractable tumor microenvironment plays an important role in the development and progression of HCC and is one of three major unresolved issues in clinical practice (cancer recurrence, fatal metastasis, and the refractory tumor microenvironment). Despite significant advances, improved molecular and cellular characterization of the tumor microenvironment is still required since it plays an important role in the genesis and progression of HCC. The purpose of this review is to present an overview of the HCC immune microenvironment, distinct cellular constituents, current therapies, and potential immunotherapy methods.
Collapse
Affiliation(s)
- Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki Dimopoulou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77:1773-1796. [PMID: 35989535 PMCID: PMC9941399 DOI: 10.1002/hep.32740] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
The liver is the sixth most common site of primary cancer in humans and the fourth leading cause of cancer-related death in the world. Hepatocellular carcinoma (HCC) accounts for 90% of liver cancers. HCC is a prevalent disease with a progression that is modulated by the immune system. Half of the patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib, as a first-line therapy. In the last few years, immune-checkpoint inhibitors (ICIs) have revolutionized cancer therapy and have gained an increased interest in the treatment of HCC. In 2020, the combination of atezolizumab (anti-programmed death-ligand 1) and bevacizumab (anti-vascular endothelial growth factor) improved overall survival over sorafenib, resulting in Food and Drug Administration (FDA) approval as a first-line treatment for patients with advanced HCC. Despite these major advances, a better molecular and cellular characterization of the tumor microenvironment is still needed because it has a crucial role in the development and progression of HCC. Inflamed (hot) and noninflamed (cold) HCC tumors and genomic signatures have been associated with response to ICIs. However, there are no additional biomarkers to guide clinical decision-making. Other immune-targeting strategies, such as adoptive T-cell transfer, vaccination, and virotherapy, are currently under development. This review provides an overview on the HCC immune microenvironment, different cellular players, current available immunotherapies, and potential immunotherapy modalities.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
| | - Amaia Lujambio
- Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai , Tisch Cancer Institute , New York , New York , USA
- Icahn School of Medicine at Mount Sinai , The Precision Immunology Institute , New York , New York , USA
- Graduate School of Biomedical Sciences , Icahn School of Medicine at Mount Sinai , New York , New York , USA
| |
Collapse
|
4
|
Ibraheem K, Yhmed AMA, Nasef MM, Georgopoulos NT. TRAF3/p38-JNK Signalling Crosstalk with Intracellular-TRAIL/Caspase-10-Induced Apoptosis Accelerates ROS-Driven Cancer Cell-Specific Death by CD40. Cells 2022; 11:cells11203274. [PMID: 36291141 PMCID: PMC9600997 DOI: 10.3390/cells11203274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Department of Medical Laboratory Sciences, Faculty of Medical Technology, Wadi Alshatti University, Wadi Alshatti P.O. Box 68, Libya
| | - Mohamed M. Nasef
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Correspondence: ; Tel.: +44-(0)1484-25-6860
| |
Collapse
|
5
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
6
|
CD40 monoclonal antibody and OK432 synergistically promote the activation of dendritic cells in immunotherapy. Cancer Cell Int 2022; 22:216. [PMID: 35715855 PMCID: PMC9206283 DOI: 10.1186/s12935-022-02630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background Colorectal cancer (CRC) with pulmonary metastasis usually indicates a poor prognosis, whereas patients may benefit from adoptive cell therapy. Tumor-specific cytotoxic T lymphocytes (CTLs) have been reported as a promising treatment for CRC. However, the antitumor effect of CTLs remains limited partially due to insufficient production of effector cells via the activation by antigen-presenting dendritic cells (DCs). Method This study showed that a combination of CD40 mAb and Picibanil (OK-432) could significantly enhance the activation of CTLs by DCs, both in vitro and in vivo. Flow cytometry, colon cancer mouse model, and pathological staining were employed to demonstrate the specific functions. Results This approach promoted the maturation of DCs, augmented the production of stimulatory cytokines, and suppressed the secretion of inhibitory cytokines. Additionally, it facilitated the killing efficiency of CTLs via stimulating their proliferation while restraining the number of Tregs, concomitantly with the positive regulation of corresponding cytokines. Furthermore, the combined unit could hurdle the expansion of tumor cells on metastatic lungs in the colon cancer mouse model. Conclusion Collectively, the combination of CD40-mAb and OK-432 facilitated the maturation of DCs and enhanced the cytotoxicity of T cells, promising therapeutic approach against CRC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02630-x.
Collapse
|
7
|
Kawaguchi H, Sakamoto T, Koya T, Togi M, Date I, Watanabe A, Yoshida K, Kato T, Nakamura Y, Ishigaki Y, Shimodaira S. Quality Verification with a Cluster-Controlled Manufacturing System to Generate Monocyte-Derived Dendritic Cells. Vaccines (Basel) 2021; 9:vaccines9050533. [PMID: 34065520 PMCID: PMC8160655 DOI: 10.3390/vaccines9050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.
Collapse
Affiliation(s)
- Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (T.K.J.); (Y.N.); (Y.I.)
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan; (H.K.); (T.S.); (T.K.); (M.T.); (I.D.); (A.W.)
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa 920-0293, Japan;
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
8
|
Mizandari M, Azrumelashvili T, Toria N, Nanava N, Pantsulaia I, Kikodze N, Janikashvili N, Chikovani T. Cured giant hepatocellular carcinoma after transarterial embolization complicated with liver abscess formation. Radiol Case Rep 2020; 15:1485-1492. [PMID: 32670446 PMCID: PMC7338999 DOI: 10.1016/j.radcr.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Many patients with hepatocellular carcinoma cannot be treated surgically because of the advanced stage of the tumor and/or coexisting cirrhosis. Transcatheter arterial embolization (TAE) represents an alternative therapeutic approach for some of these patients. However, it is not a curative measure, and an additional therapy is required to eradicate the residual disease. In this communication, we report a case of 55-year-old man with giant hepatocellular carcinoma located in the right lobe of the liver that was successfully treated with TAE. TAE completely devascularized the tumor in one session. Despite of postembolization antibiotic therapy, complete tumor necrosis led to abscess formation. After 57 days of abscess drainage, necrotic tumor tissue was completely evacuated from the drained cavity; no viable tumor tissue was identified by computed tomography/magnetic resonance imaging scan on a 5 year follow-up. TAE procedure can be suggested as a modulator of antitumor immune response, by exposing tumor antigens after necrosis leading to inflammation. In addition to necrosis caused by TAE, an antimicrobial acute inflammatory reaction in the treated area led to the complete destruction of the giant tumor.
Collapse
Affiliation(s)
- Malkhaz Mizandari
- Department of Diagnostic & Interventional Radiology of New Hospitals LTD, Tbilisi, Georgia.,Department of Radiology, Tbilisi state Medical University, Tbilisi, Georgia
| | | | - Nino Toria
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| | - Nino Nanava
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| | - Ia Pantsulaia
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| | - Nino Kikodze
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| | - Nona Janikashvili
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| | - Tinatin Chikovani
- Department of Immunology, Tbilisi state Medical University, Street 33, Vazha-Pshavela Ave, Tbilisi, 0689, Georgia
| |
Collapse
|
9
|
Amini M, Ghorban K, Mokhtarzadeh A, Dadmanesh M, Baradaran B. CD40 DNA hypermethylation in primary gastric tumors; as a novel diagnostic biomarker. Life Sci 2020; 254:117774. [PMID: 32407843 DOI: 10.1016/j.lfs.2020.117774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
AIMS Gastric cancer (GC) remains one of the deadliest malignancies worldwide due to its poor prognosis. DNA methylation changes, as an early event during tumor progression, constitute attractive markers for cancer diagnostics. In the current study, CD40 DNA methylation was investigated in GC as a novel epigenetic biomarker. MAIN METHODS We first analyzed DNA methylation microarrays from the Gene Expression Omnibus database on GC samples to evaluate the potential diagnostic value of CD40 methylation. Moreover, using q-MSP, in a set of internal samples including GC primary tumors and adjacent normal specimens, CD40 DNA methylation levels were determined. The Cancer Genome Atlas (TCGA) data on GC was also analyzed for further validation. KEY FINDINGS Our results illustrated significant CD40 hypermethylation in GC samples compared to normal specimens which was significantly correlated with the clinical stage of malignancy. Besides, the high accuracy of CD40 methylation as a diagnostic biomarker in GC was confirmed using the ROC curve analysis with an AUC value of 0.9089. Also, gene set enrichment analysis showed that CD40 is mainly involved in biological processes regulating immune response activation in GC. Further analysis of other prevalent cancer entities in TCGA showed that CD40 hypermethylation is a common event during tumor progression and could be considered as a potential biomarker for the detection of breast, colorectal, and prostate cancers as well. SIGNIFICANCE The finding of this study suggests that CD40 methylation as a potential pan biomarker could be a valuable target for liquid biopsy application of human cancers.
Collapse
Affiliation(s)
- Mohammad Amini
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Koya T, Date I, Kawaguchi H, Watanabe A, Sakamoto T, Togi M, Kato T, Yoshida K, Kojima S, Yanagisawa R, Koido S, Sugiyama H, Shimodaira S. Dendritic Cells Pre-Pulsed with Wilms' Tumor 1 in Optimized Culture for Cancer Vaccination. Pharmaceutics 2020; 12:pharmaceutics12040305. [PMID: 32231023 PMCID: PMC7238244 DOI: 10.3390/pharmaceutics12040305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in cancer vaccination therapy targeting tumor-associated antigens (TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been conventionally applied in adherent manufacturing systems with separate loading of TAAs before clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were performed for process validation, and findings were compared with those for conventional DCs (cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus, despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs) were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based drug delivery system to induce acquired immunity.
Collapse
Affiliation(s)
- Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Tomohisa Kato
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Kenichi Yoshida
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Shunsuke Kojima
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Ryu Yanagisawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Shigeo Koido
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan;
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
11
|
Ibraheem K, Yhmed AMA, Qayyum T, Bryan NP, Georgopoulos NT. CD40 induces renal cell carcinoma-specific differential regulation of TRAF proteins, ASK1 activation and JNK/p38-mediated, ROS-dependent mitochondrial apoptosis. Cell Death Discov 2019; 5:148. [PMID: 31815003 PMCID: PMC6892818 DOI: 10.1038/s41420-019-0229-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
A unique feature of CD40 among the TNF receptor (TNFR) superfamily is its exquisitely contextual effects, as originally demonstrated in normal and malignant B-lymphocytes. We studied renal cell carcinoma (RCC) in comparison to normal (human renal proximal tubule) cells, as a model to better understand the role of CD40 in epithelial cells. CD40 ligation by membrane-presented CD40 ligand (mCD40L), but not soluble CD40 agonist, induced extensive apoptosis in RCC cells; by contrast, normal cells were totally refractory to mCD40L. These findings underline the importance of CD40 'signal-quality' on cell fate and explain the lack of pro-apoptotic effects in RCC cells previously, while confirming the tumour specificity of CD40 in epithelial cells. mCD40L differentially regulated TRAF expression, causing sustained TRAF2/TRAF3 induction in RCC cells, yet downregulation of TRAF2 and no TRAF3 induction in normal cells, observations strikingly reminiscent of TRAF modulation in B-lymphocytes. mCD40L triggered reactive oxygen species (ROS) production, critical in apoptosis, and NADPH oxidase (Nox)-subunit p40phox phosphorylation, with Nox blockade abrogating apoptosis thus implying Nox-dependent initial ROS release. mCD40L mediated downregulation of Thioredoxin-1 (Trx-1), ASK1 phosphorylation, and JNK and p38 activation. Although both JNK/p38 were essential in apoptosis, p38 activation was JNK-dependent, which is the first report of such temporally defined JNK-p38 interplay during an apoptotic programme. CD40-killing entrained Bak/Bax induction, controlled by JNK/p38, and caspase-9-dependent mitochondrial apoptosis, accompanied by pro-inflammatory cytokine secretion, the repertoire of which also depended on CD40 signal quality. Previous reports suggested that, despite the ability of soluble CD40 agonist to reduce RCC tumour size in vivo via immunocyte activation, RCC could be targeted more effectively by combining CD40-mediated immune activation with direct tumour CD40 signalling. Since mCD40L represents a potent tumour cell-specific killing signal, our work not only offers insights into CD40's biology in normal and malignant epithelial cells, but also provides an avenue for a 'double-hit' approach for inflammatory, tumour cell-specific CD40-based therapy.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Present Address: Department of Medical Laboratory Sciences, University of Sebha, Tripoli, Libya
| | - Tahir Qayyum
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nicolas P. Bryan
- Urology Department, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield Royal Infirmary, Huddersfield, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
12
|
The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother 2019; 41:385-398. [PMID: 30273198 DOI: 10.1097/cji.0000000000000246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.
Collapse
|
13
|
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2019; 16:377-387. [PMID: 31403344 PMCID: PMC7062441 DOI: 10.1080/21645515.2019.1653744] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TNF Receptor Superfamily (TNF-R-SF) signaling is a structurally well-defined event that requires proper receptor clustering and trimerization. While the TNF-SF ligands naturally exist as trivalent functional units, the receptors are usually separated on the cell surface. Critically, receptor assembly into functional trimeric signaling complexes occurs through binding of the natural ligand unit. TNF-R-SF members, including CD40, have been key immunotherapeutic targets for over 20 years. CD40, expressed by antigen-presenting cells, endothelial cells, and many tumors, plays a fundamental role in connecting innate and adaptive immunity. The multiple investigated strategies to induce CD40 signaling can be broadly grouped into antibody-based or CD40L-based approaches. Currently, seven different antibodies and one CD40L-based hexavalent fusion protein are in active clinical trials. In this review, we describe the biology and structural properties of CD40, requirements for agonistic signal transduction through CD40 and summarize current attempts to exploit the CD40 signaling pathway for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Oliver Hill
- Research and Development, Apogenix AG, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Heidelberg, Germany
| |
Collapse
|
14
|
Yi DH, Stetter N, Jakobsen K, Jonsson R, Appel S. 3-Day monocyte-derived dendritic cells stimulated with a combination of OK432, TLR7/8 ligand, and prostaglandin E 2 are a promising alternative for cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1611-1620. [PMID: 30069688 PMCID: PMC11028251 DOI: 10.1007/s00262-018-2216-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/23/2018] [Indexed: 12/28/2022]
Abstract
Numerous trials using dendritic cell (DC)-based vaccinations for the treatment of cancer are being carried out. However, an improvement of the quality of DC used is highly warranted. We here generated human monocyte-derived dendritic cells using a 3 day protocol and stimulated the cells using a combination of OK432 (Picibanil), TLR7/8 ligand CL097, and reduced amounts of prostaglandin (PG)E2. We analyzed phenotype, migratory, and T-cell stimulatory capacity compared to a cytokine cocktail consisting of IL-1β, IL-6, TNF, and PGE2. The OK432 cocktail stimulated cells had a similar mature phenotype with upregulated co-stimulatory molecules, HLA-DR and CCR7 as the cytokine cocktail-matured cells and a similar cytokine profile except increased amounts of IL-12p70. Chemotaxis towards CCL19 was reduced compared to the cytokine cocktail, but increased compared to OK432 alone. The T-cell stimulatory capacity was similar to the cytokine cocktail stimulated cells. In conclusion, the OK432 cocktail has the advantage of inducing IL-12p70 production without impairing phenotype or T-cell stimulatory capacity of the cells and might, therefore, be an advantageous alternative to be used in DC-based immunotherapy.
Collapse
Affiliation(s)
- Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Nadine Stetter
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Kjerstin Jakobsen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway.
| |
Collapse
|
15
|
Collignon A, Silvy F, Robert S, Trad M, Germain S, Nigri J, André F, Rigot V, Tomasini R, Bonnotte B, Lombardo D, Mas E, Beraud E. Dendritic cell-based vaccination: powerful resources of immature dendritic cells against pancreatic adenocarcinoma. Oncoimmunology 2018; 7:e1504727. [PMID: 30524902 DOI: 10.1080/2162402x.2018.1504727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAC) has a poor prognosis. One treatment approach, investigated here, is to reinforce antitumor immunity. Dendritic cells (DCs) are essential for the development and regulation of adaptive host immune responses against tumors. A major role for DCs may be as innate tumoricidal effector cells. We explored the efficacy of vaccination with immature (i)DCs, after selecting optimal conditions for generating immunostimulatory iDCs. We used two models, C57BL/6Jrj mice with ectopic tumors induced by the PAC cell line, Panc02, and genetically engineered (KIC) mice developing PAC. Therapeutic iDC-vaccination resulted in a significant reduction in tumor growth in C57BL/6Jrj mice and prolonged survival in KIC mice. Prophylactic iDC-vaccination prevented subcutaneous tumor development. These protective effects were long-lasting in Panc02-induced tumor development, but not in melanoma. iDC-vaccination impacted the immune status of the hosts by greatly increasing the percentage of CD8+ T-cells, and natural killer (NK)1.1+ cells, that express granzyme B associated with Lamp-1 and IFN-γ. Efficacy of iDC-vaccination was CD8+ T-cell-dependent but NK1.1+ cell-independent. We demonstrated the ability of DCs to produce peroxynitrites and to kill tumor cells; this killing activity involved peroxynitrites. Altogether, these findings make killer DCs the pivotal actors in the beneficial clinical outcome that accompanies antitumor immune responses. We asked whether efficacy can be improved by combining DC-vaccination with the FOLFIRINOX regimen. Combined treatment significantly increased the lifespan of KIC mice with PAC. Prolonged treatment with FOLFIRINOX clearly augmented this beneficial effect. Combining iDC-vaccination with FOLFIRINOX may therefore represent a promising therapeutic option for patients with PAC.
Collapse
Affiliation(s)
- Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | | | - Malika Trad
- CHU Dijon-Bocage, Médecine interne et Immunologie Clinique, Dijon, France
| | - Sébastien Germain
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Jérémy Nigri
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Cancer Research Center of Marseille, Marseille, France
| | - Frédéric André
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Véronique Rigot
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Richard Tomasini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Cancer Research Center of Marseille, Marseille, France
| | - Bernard Bonnotte
- CHU Dijon-Bocage, Médecine interne et Immunologie Clinique, Dijon, France
| | - Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
16
|
Ibraheem K, Dunnill CJ, Ioannou M, Mohamed A, Albarbar B, Georgopoulos NT. An in vitro Co-culture System for the Activation of CD40 by Membrane-presented CD40 Ligand versus Soluble Agonist. Bio Protoc 2018; 8:e2907. [PMID: 34395739 DOI: 10.21769/bioprotoc.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
One fundamental property of the TNR receptor (TNFR) family relates to how 'signal quality' (the extent of receptor ligation or cross-linking) influences the outcome of receptor ligation, for instance the induction of death in tumour cells. It is unequivocal that membrane-presented ligand (delivered to target cells via cell-surface presentation by co-culture with ligand-expressing third-party cells) induces a greater extent of carcinoma cell death in vitro in comparison to non-cross-linked agonists (agonistic antibodies and/or recombinant ligands). The CD40 receptor epitomises this fundamental property of TNF receptor-ligand interactions, as the extent of CD40 cross-linking dictates cell fate. Membrane-presented CD40 ligand (mCD40L), but not soluble agonists (e.g., agonistic anti-CD40 antibody), induces high level of pro-inflammatory cytokine secretion and causes extensive cell death (apoptosis) in malignant (but not normal) epithelial cells. In this article, we describe a co-culture system for the activation of CD40 by mCD40L and subsequent detection of various features of apoptosis (including cell membrane permeabilisation, DNA fragmentation, caspase activation) as well as detection of intracellular mediators of cell death (including adaptor proteins, pro-apoptotic kinases and reactive oxygen species, ROS).
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Christopher J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Myria Ioannou
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Albashir Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Balid Albarbar
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
17
|
Interferon-α-inducible Dendritic Cells Matured with OK-432 Exhibit TRAIL and Fas Ligand Pathway-mediated Killer Activity. Sci Rep 2017; 7:42145. [PMID: 28191816 PMCID: PMC5304184 DOI: 10.1038/srep42145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Active human dendritic cells (DCs), which efficiently induce immune responses through their functions as antigen-presenting cells, exhibit direct anti-tumour killing activity in response to some pathogens and cytokines. These antigen-presenting and tumour killing abilities may provide a breakthrough in cancer immunotherapy. However, the mechanisms underlying this killer DC activity have not been fully proven, despite the establishment of interferon-α (IFN-α)-generated killer DCs (IFN-DCs). Here mature IFN-DCs (mIFN-DCs), generated from IFN-DCs primed with OK-432 (streptococcal preparation), exhibited elevated expression of CD86 and human leukocyte antigen-DR (minimum criteria for DC vaccine clinical trials) as well as antigen-presenting abilities comparable with those of mature IL-4-DCs (mIL-4-DCs). Interestingly, the killing activity of mIFN-DCs, which correlated with the expression of CD56 (natural killer cell marker) and was activated via the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand pathway, was stronger than that of IFN-DCs and remarkably stronger than that of mIL-4-DCs. Therefore, mIFN-DCs exhibit great potential as an anti-cancer vaccine that would promote both acquired immunity and direct tumour killing.
Collapse
|
18
|
Dunnill CJ, Ibraheem K, Mohamed A, Southgate J, Georgopoulos NT. A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis. Oncogene 2016; 36:2515-2528. [PMID: 27869172 PMCID: PMC5422712 DOI: 10.1038/onc.2016.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Abstract
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant' and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold' to induce death; an observation that is both of fundamental importance and carries implications for cancer therapy.
Collapse
Affiliation(s)
- C J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - K Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - A Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - N T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
19
|
Pandey VK, Amin PJ, Shankar BS. G1-4A, a polysaccharide from Tinospora cordifolia induces peroxynitrite dependent killer dendritic cell (KDC) activity against tumor cells. Int Immunopharmacol 2014; 23:480-8. [DOI: 10.1016/j.intimp.2014.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
|
20
|
Nakagawa H, Mizukoshi E, Iida N, Terashima T, Kitahara M, Marukawa Y, Kitamura K, Nakamoto Y, Hiroishi K, Imawari M, Kaneko S. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation. Cancer Immunol Immunother 2014; 63:347-56. [PMID: 24384836 PMCID: PMC11029702 DOI: 10.1007/s00262-013-1514-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Abstract
Radiofrequency ablation therapy (RFA) is a radical treatment for liver cancers and induces tumor antigen-specific immune responses. In the present study, we examined the antitumor effects of focal OK-432-stimulated dendritic cell (DC) transfer combined with RFA and analyzed the functional mechanisms involved using a murine model. C57BL/6 mice were injected subcutaneously with colon cancer cells (MC38) in their bilateral flanks. After the establishment of tumors, the subcutaneous tumor on one flank was treated using RFA, and then OK-432-stimulated DCs were injected locally. The antitumor effect of the treatment was evaluated by measuring the size of the tumor on the opposite flank, and the immunological responses were assessed using tumor-infiltrating lymphocytes, splenocytes and draining lymph nodes. Tumor growth was strongly inhibited in mice that exhibited efficient DC migration after RFA and OK-432-stimulated DC transfer, as compared to mice treated with RFA alone or treatment involving immature DC transfer. We also demonstrated that the antitumor effect of this treatment depended on both CD8-positive and CD4-positive cells. On the basis of our findings, we believe that combination therapy for metastatic liver cancer consisting of OK-432-stimulated DCs in combination with RFA can proceed to clinical trials, and it is anticipated to be markedly superior to RFA single therapy.
Collapse
Affiliation(s)
- Hidetoshi Nakagawa
- Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Ge C, Xing Y, Wang Q, Xiao W, Lu Y, Hu X, Gao Z, Xu M, Ma Y, Cao R, Liu J. Improved efficacy of therapeutic vaccination with dendritic cells pulsed with tumor cell lysate against hepatocellular carcinoma by introduction of 2 tandem repeats of microbial HSP70 peptide epitope 407-426 and OK-432. Int Immunopharmacol 2011; 11:2200-7. [PMID: 22015603 DOI: 10.1016/j.intimp.2011.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/08/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022]
Abstract
Therapeutic vaccination with dendritic cells (DCs) pulsed with tumor cell lysate vaccine (H-D) represents an attractive approach for hepatocellular carcinoma (HCC) treatment. However, the efficacy of this approach is not most satisfactory for the low levels of T helper 1 (Th1)-type cytokines secretion and weak T cell responses. In this study, in order to increase the potency of H-D, two tandem repeats of microbial HSP70 peptide epitope 407-426 (2mHSP70(407-426), M2) which has been demonstrated to be effective in enhancing DC maturation were applied. The DC vaccine (HM-D) which was HCC tumor cell lysate pulsed with M2 was developed. Nevertheless, the immunotherapeutic effect was still not satisfactory enough even some promotion was obtained. Therefore, OK-432 (OK), which is a useful anti-cancer agent and effectively in stimulating DC maturation, was introduced to HM-D. Our results demonstrated that treatment with the improved DC vaccine which was tumor cell lysate pulsed with M2 and OK (HMO-D), compared with H-D and HM-D, significantly increased cell surface markers (MHC-I and II, CD40, CD80, CD86 and CD11c) expression on DCs, enhanced Th1-type cytokines (IL-12, TNF-α and IFN-γ) production but not Th2-type cytokine (IL-5) production, induced remarkable high levels of lymphocytes proliferation and CD8(+) cytotoxic T-lymphocyte (CTL). Furthermore, immunization with HMO-D effectively reduced tumor progression and enhanced the survival of mice with H22 tumors. Besides, we also found that the capability of M2 in inducing the Th1 cytokines was stronger than OK. In view of these results, HMO-D vaccination provided a novel immunotherapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Chiyu Ge
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lakomy D, Janikashvili N, Fraszczak J, Trad M, Audia S, Samson M, Ciudad M, Vinit J, Vergely C, Caillot D, Foucher P, Lagrost L, Chouaib S, Katsanis E, Larmonier N, Bonnotte B. Cytotoxic dendritic cells generated from cancer patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:2775-82. [PMID: 21804019 DOI: 10.4049/jimmunol.1004146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Daniela Lakomy
- INSERM Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Faculté de Médecine, 21079 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Song L, He J, Wang X, Ma H, Zhang S, Dai Z, Wang B, Ma X. High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin in the treatment of patients with malignant hydrothorax. THE CHINESE-GERMAN JOURNAL OF CLINICAL ONCOLOGY 2011; 10:77-80. [DOI: 10.1007/s10330-011-0743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
|
25
|
Nakamoto Y, Mizukoshi E, Kitahara M, Arihara F, Sakai Y, Kakinoki K, Fujita Y, Marukawa Y, Arai K, Yamashita T, Mukaida N, Matsushima K, Matsui O, Kaneko S. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization. Clin Exp Immunol 2010; 163:165-77. [PMID: 21087443 DOI: 10.1111/j.1365-2249.2010.04246.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite curative locoregional treatments for hepatocellular carcinoma (HCC), tumour recurrence rates remain high. The current study was designed to assess the safety and bioactivity of infusion of dendritic cells (DCs) stimulated with OK432, a streptococcus-derived anti-cancer immunotherapeutic agent, into tumour tissues following transcatheter hepatic arterial embolization (TAE) treatment in patients with HCC. DCs were derived from peripheral blood monocytes of patients with hepatitis C virus-related cirrhosis and HCC in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor and stimulated with 0·1 KE/ml OK432 for 2 days. Thirteen patients were administered with 5 × 10⁶ of DCs through arterial catheter during the procedures of TAE treatment on day 7. The immunomodulatory effects and clinical responses were evaluated in comparison with a group of 22 historical controls treated with TAE but without DC transfer. OK432 stimulation of immature DCs promoted their maturation towards cells with activated phenotypes, high expression of a homing receptor, fairly well-preserved phagocytic capacity, greatly enhanced cytokine production and effective tumoricidal activity. Administration of OK432-stimulated DCs to patients was found to be feasible and safe. Kaplan-Meier analysis revealed prolonged recurrence-free survival of patients treated in this manner compared with the historical controls (P = 0·046, log-rank test). The bioactivity of the transferred DCs was reflected in higher serum concentrations of the cytokines IL-9, IL-15 and tumour necrosis factor-α and the chemokines CCL4 and CCL11. Collectively, this study suggests that a DC-based, active immunotherapeutic strategy in combination with locoregional treatments exerts beneficial anti-tumour effects against liver cancer.
Collapse
Affiliation(s)
- Y Nakamoto
- Cancer Research Institute, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B. Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:1876-84. [PMID: 20089706 DOI: 10.4049/jimmunol.0900831] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs), essential for the initiation and regulation of adaptive immune responses, have been used as anticancer vaccines. DCs may also directly trigger tumor cell death. In the current study, we have investigated the tumoricidal and immunostimulatory activities of mouse bone marrow-derived DCs. Our results indicate that these cells acquire killing capabilities toward tumor cells only when activated with LPS or Pam3Cys-SK4. Using different transgenic mouse models including inducible NO synthase or GP91 knockout mice, we have further established that LPS- or Pam3Cys-SK4-activated DC killing activity involves peroxynitrites. Importantly, after killing of cancer cells, DCs are capable of engulfing dead tumor cell fragments and of presenting tumor Ags to specific T lymphocytes. Thus, upon specific stimulation, mouse bone marrow-derived DCs can directly kill tumor cells through a novel peroxynitrite-dependent mechanism and participate at virtually all levels of antitumor immune responses, which reinforces their interest in immunotherapy.
Collapse
Affiliation(s)
- Jennifer Fraszczak
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1-11. [PMID: 19618185 PMCID: PMC11031008 DOI: 10.1007/s00262-009-0736-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.
Collapse
Affiliation(s)
- Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Daniela Lakomy
- Faculty of Medicine, INSERM UMR 866, IFR 100, Dijon, France
| | | | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|