1
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Suresh V, Mohanty V, Avula K, Ghosh A, Singh B, Reddy RK, Parida D, Suryawanshi AR, Raghav SK, Chattopadhyay S, Prasad P, Swain RK, Dash R, Parida A, Syed GH, Senapati S. Quantitative proteomics of hamster lung tissues infected with SARS-CoV-2 reveal host factors having implication in the disease pathogenesis and severity. FASEB J 2021; 35:e21713. [PMID: 34105201 PMCID: PMC8206718 DOI: 10.1096/fj.202100431r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS‐CoV‐2 isolate in a self‐limiting and non‐lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS‐CoV‐2 infection similar to that reported earlier in COVID‐19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID‐19 was only occasionally noticed. The lung‐associated pathological changes were very prominent on the 4th day post‐infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS‐CoV‐2‐infected hamsters on day 4 and day 14 post‐infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant‐associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS‐CoV‐2 pathogenesis and progression of the disease.
Collapse
Affiliation(s)
- Voddu Suresh
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | | | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Bharati Singh
- Institute of Life Sciences, Bhubaneswar, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Deepti Parida
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | | | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, India
| | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, India
| | | | | |
Collapse
|