1
|
Cossette BJ, Shetty S, Issah LA, Collier JH. Self-Assembling Allergen Vaccine Platform Raises Therapeutic Allergen-Specific IgG Responses without Induction of Systemic Allergic Responses. ACS Biomater Sci Eng 2024; 10:1819-1829. [PMID: 38366973 PMCID: PMC11382287 DOI: 10.1021/acsbiomaterials.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Allergen immunotherapies are often successful at desensitizing allergic patients but can require life-long dosing and suffer from frequent adverse events including instances of systemic anaphylaxis, leading to poor patient compliance and high cost. Allergen vaccines, in turn, can generate more durable immunological allergen desensitization with far fewer doses. However, like immunotherapies, allergen vaccines are often highly reactogenic in allergic patients, hampering their use in therapeutic settings. In this work, we utilize a peptide-based self-assembling nanofiber platform to design allergen vaccines against allergen B-cell epitopes that do not elicit systemic anaphylaxis when administered subcutaneously to allergic mice. We show that, in contrast to protein vaccines, nanofiber vaccines prevent leakage of allergen material into the vascular compartment, a feature that likely underpins their reduced systemic reactogenicity. Further, we show that our allergen vaccine platform elicits therapeutic IgG antibody responses capable of desensitizing allergic mice to allergen-induced Type I hypersensitivity reactions. Finally, we have demonstrated a proof-of-concept for the therapeutic potential of nanofiber-based peanut allergen vaccines directed against peanut allergen-derived epitopes.
Collapse
Affiliation(s)
| | - Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luqman A. Issah
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Vester SK, Davies AM, Beavil RL, Sandhar BS, Beavil AJ, Gould HJ, Sutton BJ, McDonnell JM. Expanding the Anti-Phl p 7 Antibody Toolkit: An Anti-Idiotype Nanobody Inhibitor. Antibodies (Basel) 2023; 12:75. [PMID: 37987253 PMCID: PMC10660547 DOI: 10.3390/antib12040075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
We have previously produced a toolkit of antibodies, comprising recombinant human antibodies of all but one of the human isotypes, directed against the polcalcin family antigen Phl p 7. In this work, we complete the toolkit of human antibody isotypes with the IgD version of the anti-Phl p 7 monoclonal antibody. We also raised a set of nanobodies against the IgD anti-Phl p 7 antibody and identify and characterize one paratope-specific nanobody. This nanobody also binds to the IgE isotype of this antibody, which shares the same idiotype, and orthosterically inhibits the interaction with Phl p 7. The 2.1 Å resolution X-ray crystal structure of the nanobody in complex with the IgD Fab is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK; (S.K.V.); (A.M.D.); (R.L.B.); (B.S.S.); (A.J.B.); (H.J.G.); (B.J.S.)
| |
Collapse
|
3
|
Schneider L, Rabe KS, Domínguez CM, Niemeyer CM. Hapten-Decorated DNA Nanostructures Decipher the Antigen-Mediated Spatial Organization of Antibodies Involved in Mast Cell Activation. ACS NANO 2023; 17:6719-6730. [PMID: 36990450 PMCID: PMC10100567 DOI: 10.1021/acsnano.2c12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.
Collapse
|
4
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
5
|
Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food Chem Toxicol 2022; 167:113273. [PMID: 35809717 DOI: 10.1016/j.fct.2022.113273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
The susceptibility of a novel food protein to digestion in the pepsin resistance test is widely used to inform the allergenicity risk assessment process. However, it does not model the variation in the intragastric environment found in vivo. Consequently a 96-well plate format in vitro gastric digestion protocol has been developed with a high and low pepsin activity test executed at pH 1.2, 2.5, 5.5 and 6.5. It was used to analyse seven allergens (from milk, egg, peach and peanut) and two non-allergens (cytochrome c and zein). Digestion was monitored using SDS-PAGE and densitometry. In silico predictions were not confirmed experimentally for most of the proteins studied. Proteins were ranked according to half-life and showed susceptibility to digestion was related to the stability of protein structure and protein solubility rather than allergenicity per se. Highly digestible proteins, such as β-casein and Ara h 1, generated abundant resistant fragments Mr > 3.5 kDa in the low pepsin activity test which could be immunologically significant within the context of allergenicity risk assessment for susceptible groups such as infants. The high- and low pepsin activity tests used in this study provided complementary data to support allergenicity risk assessment and used only 10 mg protein.
Collapse
|
6
|
Chakrapani N, Fischer J, Swiontek K, Codreanu-Morel F, Hannachi F, Morisset M, Mugemana C, Bulaev D, Blank S, Bindslev-Jensen C, Biedermann T, Ollert M, Hilger C. α-Gal present on both glycolipids and glycoproteins contributes to immune response in meat-allergic patients. J Allergy Clin Immunol 2022; 150:396-405.e11. [PMID: 35459547 DOI: 10.1016/j.jaci.2022.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The α-Gal syndrome is associated with the presence of IgE directed to the carbohydrate galactose-α-1,3-galactose (α-Gal) and is characterized by a delayed allergic reaction occurring 2 to 6 hours after ingestion of mammalian meat. On the basis of their slow digestion and processing kinetics, α-Gal-carrying glycolipids have been proposed as the main trigger of the delayed reaction. OBJECTIVE We analyzed and compared the in vitro allergenicity of α-Gal-carrying glycoproteins and glycolipids from natural food sources. METHODS Proteins and lipids were extracted from pork kidney (PK), beef, and chicken. Glycolipids were purified from rabbit erythrocytes. The presence of α-Gal and IgE binding of α-Gal-allergic patient sera (n = 39) was assessed by thin-layer chromatography as well as by direct and inhibition enzyme-linked immunosorbent assay. The in vitro allergenicity of glycoproteins and glycolipids from different meat extracts was determined by basophil activation test. Glycoprotein stability was evaluated by simulated gastric and intestinal digestion assays. RESULTS α-Gal was detected on glycolipids of PK and beef. Patient IgE antibodies recognized α-Gal bound to glycoproteins and glycolipids, although binding to glycoproteins was more potent. Rabbit glycolipids were able to strongly activate patient basophils, whereas lipid extracts from PK and beef were also found to trigger basophil activation, but at a lower capacity compared to the respective protein extracts. Simulated gastric digestion assays of PK showed a high stability of α-Gal-carrying proteins in PK. CONCLUSION Both α-Gal-carrying glycoproteins and glycolipids are able to strongly activate patient basophils. In PK and beef, α-Gal epitopes seem to be less abundant on glycolipids than on glycoproteins, suggesting a major role of glycoproteins in delayed anaphylaxis upon consumption of these food sources.
Collapse
Affiliation(s)
- Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | | | - Farah Hannachi
- Immunology-Allergology Unit, Centre Hospitalier Luxembourg, Differdange, Luxembourg
| | - Martine Morisset
- Immunology-Allergology Unit, Centre Hospitalier Luxembourg, Differdange, Luxembourg
| | - Clément Mugemana
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| | - Dmitry Bulaev
- Competence Center for Methodology and Statistics, LIH, Esch-sur-Alzette, Luxembourg
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environment Health, Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
7
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
8
|
Hazebrouck S, Canon N, Dreskin SC. The Effector Function of Allergens. FRONTIERS IN ALLERGY 2022; 3:818732. [PMID: 35386644 PMCID: PMC8974742 DOI: 10.3389/falgy.2022.818732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 01/29/2023] Open
Abstract
Allergens are antigens that generate an IgE response (sensitization) in susceptible individuals. The allergenicity of an allergen can be thought of in terms of its ability to sensitize as well as its ability to cross-link IgE/IgE receptor complexes on mast cells and basophils leading to release of preformed and newly formed mediators (effector activity). The identity of the allergens responsible for sensitization may be different from those that elicit an allergic response. Effector activity is determined by (1) the amount of specific IgE (sIgE) and in some circumstances the ratio of sIgE to total IgE, (2) the number of high affinity receptors for IgE (FcεR1) on the cell surface, (3) the affinity of binding of sIgE for its epitope and, in a polyclonal response, the collective avidity, (4) the number and spatial relationships of IgE binding epitopes on the allergen and (5) the presence of IgG that can bind to allergen and either block binding of sIgE and/or activate low affinity IgG receptors that activate intracellular inhibitory pathways. This review will discuss these important immunologic and physical properties that contribute to the effector activity of allergens.
Collapse
Affiliation(s)
- Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Nicole Canon
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Stephen C. Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
9
|
Ehlers AM, Hartog Jager CF, Knulst AC, Otten HG. Distinction between peanut allergy and tolerance by characterization of B cell receptor repertoires. Allergy 2021; 76:2753-2764. [PMID: 33969502 PMCID: PMC8453529 DOI: 10.1111/all.14897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
Background Specific IgE against a peanut 2S albumin (Ara h 2 or 6) is the best predictor of clinically relevant peanut sensitization. However, sIgE levels of peanut allergic and those of peanut sensitized but tolerant patients partly overlap, highlighting the need for improved diagnostics to prevent incorrect diagnosis and consequently unnecessary food restrictions. Thus, we sought to explore differences in V(D)J gene transcripts coding for peanut 2S albumin‐specific monoclonal antibodies (mAbs) from allergic and sensitized but tolerant donors. Methods 2S albumin‐binding B‐cells were single‐cell sorted from peripheral blood of peanut allergic (n=6) and tolerant (n=6) donors sensitized to Ara h2 and/or 6 (≥ 0.1 kU/l) and non‐atopic controls (n=5). h 2 and/or 6 (≥ 0.1 kU/l). Corresponding h heavy and light chain gene transcripts were heterologously expressed as mAbs and tested for specificity to native Ara h2 and 6. HCDR3 sequence motifs were identified by Levenshtein distances and hierarchically clustering. Results The frequency of 2S albumin‐binding B cells was increased in allergic (median: 0.01%) compared to tolerant (median: 0.006%) and non‐atopic donors (median: 0.0015%, p = 0.008). The majority of mAbs (74%, 29/39) bound specifically to Ara h 2 and/or 6. Non‐specific mAbs (9/10) were mainly derived from non‐atopic controls. In allergic donors, 89% of heavy chain gene transcripts consisted of VH3 family genes, compared with only 54% in sensitized but tolerant and 63% of non‐atopic donors. Additionally, certain HCDR3 sequence motifs were associated with allergy (n = 4) or tolerance (n = 3) upon hierarchical clustering of their Levenshtein distances. Conclusions Peanut allergy is associated with dominant VH3 family gene usage and certain public antibody sequences (HCDR3 motifs).
Collapse
Affiliation(s)
- Anna M. Ehlers
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Constance F. Hartog Jager
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - André C. Knulst
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
10
|
Böhmer VI, Szymanski W, Feringa BL, Elsinga PH. Multivalent Probes in Molecular Imaging: Reality or Future? Trends Mol Med 2021; 27:379-393. [PMID: 33436332 DOI: 10.1016/j.molmed.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
The rapidly developing field of molecular medical imaging focuses on specific visualization of (patho)physiological processes through the application of imaging agents (IAs) in multiple clinical modalities. Although our understanding of the principles underlying efficient IAs design has increased tremendously, many IAs still show poor in vivo imaging performance because of low binding affinity and/or specificity. These limitations can be addressed by taking advantage of multivalency, in which multiple copies of a ligand are employed to strengthen the interaction. We critically address specific challenges associated with the application of multivalent compounds in molecular imaging, and we give directions for a stepwise approach to the design of multivalent imaging probes to improve their target binding and pharmacokinetics (PK) for improved diagnostic potential.
Collapse
Affiliation(s)
- Verena I Böhmer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands; Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands; Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AF, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
11
|
Köhler VK, Crescioli S, Fazekas-Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG 1 and IgG 4 against the Major Birch Pollen Allergen Bet v 1. Int J Mol Sci 2020; 21:E5693. [PMID: 32784509 PMCID: PMC7460837 DOI: 10.3390/ijms21165693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.
Collapse
Affiliation(s)
- Verena K. Köhler
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| |
Collapse
|