1
|
Wang X, Bi C, Xin X, Zhang M, Fu H, Lan L, Wang M, Yan Z. Pyroptosis, apoptosis, and autophagy are involved in infection induced by two clinical Klebsiella pneumoniae isolates with different virulence. Front Cell Infect Microbiol 2023; 13:1165609. [PMID: 37223846 PMCID: PMC10200925 DOI: 10.3389/fcimb.2023.1165609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Klebsiella pneumoniae can cause widespread infections and is an important factor of hospital- and community-acquired pneumonia. The emergence of hypervirulent K. pneumoniae poses a serious clinical therapeutic challenge and is associated with a high mortality. The goal of this work was to investigate the influence of K. pneumoniae infection on host cells, particularly pyroptosis, apoptosis, and autophagy in the context of host-pathogen interactions to better understand the pathogenic mechanism of K. pneumoniae. Two clinical K. pneumoniae isolates, one classical K. pneumoniae isolate and one hypervirulent K. pneumoniae isolate, were used to infect RAW264.7 cells to establish an in vitro infection model. We first examined the phagocytosis of macrophages infected with K. pneumoniae. Lactate dehydrogenase (LDH) release test, and calcein-AM/PI double staining was conducted to determine the viability of macrophages. The inflammatory response was evaluated by measuring the pro-inflammatory cytokines and reactive oxygen species (ROS) production. The occurrence of pyroptosis, apoptosis, and autophagy was assessed by detecting the mRNA and protein levels of the corresponding biochemical markers. In addition, mouse pneumonia models were constructed by intratracheal instillation of K. pneumoniae for in vivo validation experiments. As for results, hypervirulent K. pneumoniae was much more resistant to macrophage-mediated phagocytosis but caused more severe cellular damage and lung tissues damage compared with classical K. pneumoniae. Moreover, we found increased expression of NLRP3, ASC, caspase-1, and GSDMD associated with pyroptosis in macrophages and lung tissues, and the levels were much higher following hypervirulent K. pneumoniae challenge. Both strains induced apoptosis in vitro and in vivo; the higher apoptosis proportion was observed in infection caused by hypervirulent K. pneumoniae. Furthermore, classical K. pneumoniae strongly triggered autophagy, while hypervirulent K. pneumoniae weakly activated this process. These findings provide novel insights into the pathogenesis of K. pneumoniae and may form the foundation for the future design of treatments for K. pneumoniae infection.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Medical Faculty, Qingdao University, Qingdao, China
| | - Chunxia Bi
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoni Xin
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Clinical Laboratory, Shandong Provincial Second People’s Hospital, Jinan, China
| | - Hengxia Fu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, China
| | - Lei Lan
- Department of Blood Transfusion, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Mengyuan Wang
- Department of Clinical Laboratory, Jinan Children’s Hospital, Jinan, China
| | - Zhiyong Yan
- College of Basic Medicine, Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Yue L, Cao H, Qi J, Yuan J, Wang X, Wang Y, Shan B, Ke H, Li H, Luan N, Liu C. Pretreatment with 3-methyladenine ameliorated Pseudomonas aeruginosa-induced acute pneumonia by inhibiting cell death of neutrophils in a mouse infection model. Int J Med Microbiol 2023; 313:151574. [PMID: 36736016 DOI: 10.1016/j.ijmm.2023.151574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections worldwide. Clinical isolates that are resistant to multiple antimicrobials make it intractable. The interactions between P. aeruginosa and host cell death have multiple effects on bacterial clearance and inflammation; however, the potential intervention effects remain to be defined. Herein, we demonstrated that intravenous administration of 3-methyladenine before, but not after, P. aeruginosa infection enhanced autophagy-independent survival, which was accompanied by a decrease in the bacterial load, alleviation of pathology and reduction in inflammatory cytokines, in an acute pneumonia mouse model. Interestingly, these beneficial effects were not dependent on neutrophil recruitment or phagocytosis, but on the enhanced killing capacity induced by inhibiting the cell death of 3-MA pretreated neutrophils. These findings demonstrate a novel protective role of 3-MA pretreatment in P. aeruginosa-induced acute pneumonia.
Collapse
Affiliation(s)
- Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jialong Qi
- The First People's Hospital of Yunnan Province & Affiliated Hospital of Kunming University of Science and Technology, Kunming 650034, China
| | - Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xin Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Bin Shan
- Department of Clinical Lab, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huaxin Ke
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
4
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
5
|
Liu C, Xiao K, Xie L. Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front Immunol 2022; 13:922702. [PMID: 36059534 PMCID: PMC9433910 DOI: 10.3389/fimmu.2022.922702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality that poses a major challenge in critical care medicine. The development of ALI/ARDS involves excessive inflammatory response, and macrophage autophagy plays an important role in regulating the inflammatory response in ALI/ARDS. In this paper, we review the effects of autophagy in regulating macrophage function, discuss the roles of macrophage autophagy in ALI/ARDS, and highlight drugs and other interventions that can modulate macrophage autophagy in ALI/ARDS to improve the understanding of the mechanism of macrophage autophagy in ALI/ARDS and provide new ideas and further research directions for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
6
|
Xu N, Zhao Y, Bu H, Tan S, Dong G, Liu J, Wang M, Jiang J, Yuan B, Li R. Cochlioquinone derivative CoB1 induces cytostatic autophagy in lung cancer through miRNA-125b and Foxp3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153742. [PMID: 34624808 DOI: 10.1016/j.phymed.2021.153742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide, yet no effective medication for this disease is available. Cochlioquinone B derivative (CoB1), purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana, affects the defense against pulmonary pathogens by regulating inflammatory responses. However, the effect of CoB1 on lung cancer and the underlying molecular mechanisms remain unknown. In the present study, we investigate the protective effects of CoB1 on lung cancer and explore its underlying mechanism. METHOD We examined the inhibitory effect of CoB1 on lung cancer cells (A549 cells) by MTT and colony formation assay. The effect of CoB1 on cytostatic autophagy in lung cancer cells was verified by Western blot, transmission electron microscopy, and confocal microscopy. The differentially expressed miRNAs were identified using quantitative RT-PCR. Luciferase assay and Northern blot were performed to verify the correlation between miRNA-125b and Foxp3. Protein expression in autophagy-related pathways was detected by Western blot. Xenograft tumor models were constructed to explore the inhibitory effect of CoB1 and the role of miRNA-125b as a suppressor in lung cancer in vivo. RESULT CoB1 inhibited lung cancer cell proliferation by inducing cytostatic autophagy both in vitro and in vivo. CoB1-induced autophagy was related to blocking of the PI3K/Akt1/mTOR signaling pathway. In addition, CoB1 induced miR-125b expression via activating the TAK1/MKK4/JNK/Smad axis, thereby reducing Foxp3 expression and further inducing autophagy. CONCLUSION This study is the first to report the specific inhibitory function of CoB1 purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana in lung cancer, which may be due to the induction of autophagy. This study provides evidence and novel insights into the anticancer efficacy of CoB1.
Collapse
Affiliation(s)
- Nana Xu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Laboratory of Morphology, Xuzhou Medical University, Xuzhou 221004, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Yunyun Zhao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Department of Physiology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Shirui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guokai Dong
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Jinjuan Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Meng Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Yuan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
7
|
Anthocyanin Extract from Purple Sweet Potato Exacerbate Mitophagy to Ameliorate Pyroptosis in Klebsiella pneumoniae Infection. Int J Mol Sci 2021; 22:ijms222111422. [PMID: 34768852 PMCID: PMC8583717 DOI: 10.3390/ijms222111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
Given the rise of morbidity and mortality caused by Klebsiella pneumoniae (KP), the increasing number of strains resistant to antibiotics, and the emergence of hypervirulent Klebsiella pneumonia, treatment of KP infection becomes difficult; thus, novel drugs are necessary for treatment. Anthocyanins, or natural flavonoids, have an extensive effect against bacterial infection. However, few studies on anti-KP are identified. Here, we evaluated the therapeutic effect of purple sweet potato anthocyanins (PSPAs) on KP, containing 98.7% delphinidin 3-sambubioside. Results showed that KP-infected mice after PSPAs treatment manifested decreased mortality, weakened lung injury, dampened inflammatory responses, and reduced bacterial systemic dissemination in vivo. In Vitro, PSPAs significantly suppressed pyroptosis and restricted NLRP3 inflammasome activation in alveolar macrophages infected with KP. As for the mechanism, PSPAs promote mitophagy by recruiting Parkin to the mitochondria. PSPAs-conferred mitophagy increased mitochondrial membrane potential and decreased mitochondrial reactive oxygen species and mitochondrial DNA, resulting in impaired NLRP3 inflammasome activation. In addition, the promotion of mitophagy by PSPAs required the Nrf2 signaling pathway. Collectively, these findings suggest that PSPAs are a potential option for the treatment of KP infection.
Collapse
|
8
|
Liu X, Zhou ZY, Cui JL, Wang ML, Wang JH. Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Appl Microbiol Biotechnol 2021; 105:7095-7113. [PMID: 34499202 PMCID: PMC8426592 DOI: 10.1007/s00253-021-11554-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new generation of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioactive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective catalytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the production/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized recent research progress in this field, providing a reference for further research and application of fungal endophytes. KEY POINTS: •The industrial value of degradation of endophytes was summarized. • The commercial value for the pharmaceutical industry is reviewed.
Collapse
Affiliation(s)
- Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|