1
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Lou M, Heuckeroth RO, Tjaden NEB. Neuroimmune Crossroads: The Interplay of the Enteric Nervous System and Intestinal Macrophages in Gut Homeostasis and Disease. Biomolecules 2024; 14:1103. [PMID: 39334870 PMCID: PMC11430413 DOI: 10.3390/biom14091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
A defining unique characteristic of the gut immune system is its ability to respond effectively to foreign pathogens while mitigating unnecessary inflammation. Intestinal macrophages serve as the cornerstone of this balancing act, acting uniquely as both the sword and shield in the gut microenvironment. The GI tract is densely innervated by the enteric nervous system (ENS), the intrinsic nervous system of the gut. Recent advances in sequencing technology have increasingly suggested neuroimmune crosstalk as a critical component for homeostasis both within the gut and in other tissues. Here, we systematically review the ENS-macrophage axis. We focus on the pertinent molecules produced by the ENS, spotlight the mechanistic contributions of intestinal macrophages to gut homeostasis and inflammation, and discuss both existing and potential strategies that intestinal macrophages use to integrate signals from the ENS. This review aims to elucidate the complex molecular basis governing ENS-macrophage signaling, highlighting their cooperative roles in sustaining intestinal health and immune equilibrium.
Collapse
Affiliation(s)
- Meng Lou
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
| | - Robert O. Heuckeroth
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| | - Naomi E. Butler Tjaden
- Department of Pediatrics, The Children’s Hospital of Philadelphia Research Institute, Abramson Research Center and Department of Pediatrics, Pearlman School of Medicine at the University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA 19004, USA; (R.O.H.); (N.E.B.T.)
- Division of Gastroenterology, Nutrition and Hepatology, The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19004, USA
| |
Collapse
|
3
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
4
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
5
|
Zhang Y, Wang Y. The dual roles of serotonin in antitumor immunity. Pharmacol Res 2024; 205:107255. [PMID: 38862071 DOI: 10.1016/j.phrs.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Research has shown that a significant portion of cancer patients experience depressive symptoms, often accompanied by neuroendocrine hormone imbalances. Depression is frequently associated with decreased levels of serotonin with the alternate name 5-hydroxytryptamine (5-HT), leading to the common use of selective serotonin reuptake inhibitors (SSRIs) as antidepressants. However, the role of serotonin in tumor regulation remains unclear, with its expression levels displaying varied effects across different types of tumors. Tumor initiation and progression are closely intertwined with the immune function of the human body. Neuroimmunity, as an interdisciplinary subject, has played a unique role in the study of the relationship between psychosocial factors and tumors and their mechanisms in recent years. This article offers a comprehensive review of serotonin's regulatory roles in tumor onset and progression, as well as its impacts on immune cells in the tumor microenvironment. The aim is to stimulate further interdisciplinary research and discover novel targets for tumor treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
8
|
Teng S, Yang Y, Zhang W, Li X, Li W, Cui Z, Min L, Wu J. Antidepressant fluoxetine alleviates colitis by reshaping intestinal microenvironment. Cell Commun Signal 2024; 22:176. [PMID: 38475799 PMCID: PMC10935910 DOI: 10.1186/s12964-024-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The impact of antidepressants on Inflammatory bowel diseases (IBD) has been extensively studied. However, the biological effects and molecular mechanisms of antidepressants in alleviating colitis remain unclear. METHODS We systematically assessed how antidepressants (fluoxetine, fluvoxamine and venlafaxine) affected IBD and chose fluoxetine, the most effective one, for mechanism studies. We treated the C56BL/6 mice of the IBD model with fluoxetine and their controls. We initially assessed the severity of intestinal inflammation in mice by body weight loss, disease Activity Index scores and the length of the colon. The H&E staining and immunohistochemical staining of MUC2 of colon sections were performed to observe the pathological changes. RT-qPCR and western blot were conducted to assess the expression level of the barrier and inflammation-associated genes. Then, single-cell RNA sequencing was performed on mouse intestinal mucosa. Seurat was used to visualize the data. Uniform Manifold Approximation and Projection (UMAP) was used to perform the dimensionality reduction. Cell Chat package was used to perform cell-cell communication analysis. Monocle was used to conduct developmental pseudotime analysis. Last, RT-qPCR, western blot and immunofluorescence staining were conducted to test the phenomenon discovered by single-cell RNA sequencing in vitro. RESULTS We found that fluoxetine treatment significantly alleviated colon inflammation. Notably, single-cell RNA sequencing analysis revealed that fluoxetine affected the distribution of different cell clusters, cell-cell communication and KEGG pathway enrichment. Under the treatment of fluoxetine, enterocytes, Goblet cells and stem cells became the dominating cells. The pseudotime analysis showed that there was a trend for M1 macrophages to differentiate into M2 macrophages. Lastly, we tested this phenomenon in vitro, which exhibited anti-inflammatory effects on enterocytes. CONCLUSIONS Fluoxetine exhibited anti-inflammatory effects on intestinal mucosa via remodeling of the intestinal cells and macrophages, which reveals that fluoxetine is a promising therapeutic drug for the treatment of IBD and psychiatric comorbidities.
Collapse
Affiliation(s)
- Shuo Teng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Wanru Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Xiangji Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Zilu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| |
Collapse
|
9
|
Gao Z, Gao Y, Li Y, Zhou J, Li G, Xie S, Jia R, Wang L, Jiang Z, Liang M, Du C, Chen Y, Liu Y, Du L, Wang C, Dou S, Lv Z, Wang L, Wang R, Shen B, Wang Z, Li Y, Han G. 5-HT 7R enhances neuroimmune resilience and alleviates meningitis by promoting CCR5 ubiquitination. J Adv Res 2024:S2090-1232(24)00079-1. [PMID: 38432392 DOI: 10.1016/j.jare.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Excessive immune activation induces tissue damage during infection. Compared to external strategies to reconstruct immune homeostasis, host balancing ways remain largely unclear. OBJECTIVES Here we found a neuroimmune way that prevents infection-induced tissue damage. METHODS By FACS and histopathology analysis of brain Streptococcus pneumonia meningitis infection model and behavioral testing. Western blot, co-immunoprecipitation, and ubiquitination analyze the Fluoxetine initiate 5-HT7R-STUB1-CCR5 K48-linked ubiquitination degradation. RESULTS Fluoxetine, a selective serotonin reuptake inhibitor, or the agonist of serotonin receptor 5-HT7R, protects mice from meningitis by inhibiting CCR5-mediated excessive immune response and tissue damage. Mechanistically, the Fluoxetine-5-HT7R axis induces proteasome-dependent degradation of CCR5 via mTOR signaling, and then recruits STUB1, an E3 ubiquitin ligase, to initiate K48-linked polyubiquitination of CCR5 at K138 and K322, promotes its proteasomal degradation. STUB1 deficiency blocks 5-HT7R-mediated CCR5 degradation. CONCLUSION Our results reveal a neuroimmune pathway that balances anti-infection immunity via happiness neurotransmitter receptor and suggest the 5-HT7R-CCR5 axis as a potential target to promote neuroimmune resilience.
Collapse
Affiliation(s)
- Zhenfang Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jie Zhou
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shun Xie
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruiyan Jia
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ziying Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yaqiong Chen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yinji Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lin Du
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Cong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuaijie Dou
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhonglin Lv
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lubin Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
10
|
Gálvez I, Fioravanti A, Ortega E. Spa therapy and peripheral serotonin and dopamine function: a systematic review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:153-161. [PMID: 37950094 PMCID: PMC10752831 DOI: 10.1007/s00484-023-02579-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Spa therapy consists of multiple techniques based on the healing effects of water, including hydrotherapy, balneotherapy, and mud therapy, often combined with therapeutic exercises, massage, or physical therapy. Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies, especially rheumatic conditions due to its anti-inflammatory properties. The main objective of this investigation was to conduct a systematic review analyzing the available evidence on the effect of spa therapy on serotonin and dopamine function. The databases PubMed, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials (CENTRAL) were used from June to July 2023. Exclusion criteria were (1) articles not written in English, (2) full text not available, (3) article not related to the objective of the review. JADAD scale was used for methodological quality evaluation. Four studies were included in the systematic review. Two studies were related to serotonin in healthy individuals, one to serotonin in fibromyalgia, and one to dopamine in healthy individuals. One of the studies evaluated hydrotherapy, another one balneotherapy and mud-bath therapy, and the other two assessed balneotherapy interventions. Studies were very heterogeneous, and their methodological quality was low, making it difficult to draw clear conclusions regarding the effect of spa therapy on peripheral serotonin and dopamine function. The findings of this review highlight the lack of studies evaluating these neurotransmitters and hormones in the context of spa therapy. Further research is needed to evaluate the potential effects of these therapies on serotonin or dopamine function.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Antonella Fioravanti
- Organisation Mondiale du Thermalisme (OMTh) - World Hydrothermal Organization, Sede Palazzo Terme, via Vittorio Emanuele, 38056, Levico Terme, Italy
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
11
|
Karmakar S, Lal G. Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses. Methods Mol Biol 2024; 2761:181-207. [PMID: 38427238 DOI: 10.1007/978-1-0716-3662-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India.
| |
Collapse
|
12
|
Gálvez I, Hinchado MD, Otero E, Navarro MC, Ortega-Collazos E, Martín-Cordero L, Torres-Piles ST, Ortega E. Circulating serotonin and dopamine concentrations in osteoarthritis patients: a pilot study on the effect of pelotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:69-77. [PMID: 37962646 PMCID: PMC10752847 DOI: 10.1007/s00484-023-02571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Balneotherapy has demonstrated clinical efficacy in the management of pathologies involving low-grade inflammation and stress. In rheumatic conditions such as osteoarthritis (OA), this therapy presents anti-inflammatory properties and potential to improve psychological well-being. Although the neurohormones serotonin and dopamine are known to be involved in these processes, surprisingly they have not been studied in this context. The objective was to evaluate the effect of a cycle of balneotherapy with peloids (pelotherapy) on circulating serotonin and dopamine concentrations in a group of aged individuals with OA, after comparing their basal state to that of an age-matched control group. In our pilot study, a pelotherapy program (10 days) was carried out in a group of 16 elderly patients with OA, evaluating its effects on circulating serotonin and dopamine concentrations (measured by ELISA). Individuals with OA showed higher levels of serotonin and lower dopamine levels, in line with the inflammatory roles of these mediators. After pelotherapy, serotonin concentrations significantly decreased, potentially contributing to the previously reported anti-inflammatory effects of balneotherapy.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - María Dolores Hinchado
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| | - Eduardo Otero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - María Carmen Navarro
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | - Leticia Martín-Cordero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Centro Universitario de Plasencia, Universidad de Extremadura, 10600, Plasencia, Spain
| | - Silvia Teresa Torres-Piles
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Terapéutica Médico-Quirúrgica, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain.
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
13
|
Choi EL, Taheri N, Zhang Y, Matsumoto K, Hayashi Y. The critical role of muscularis macrophages in modulating the enteric nervous system function and gastrointestinal motility. J Smooth Muscle Res 2024; 60:1-9. [PMID: 38462479 PMCID: PMC10921093 DOI: 10.1540/jsmr.60.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Macrophages are the originators of inflammatory compounds, phagocytic purifiers in their local environment, and wound healing protectors in oxidative environments. They are molded by the tissue milieu they inhabit, with gastrointestinal (GI) muscularis macrophages (MMs) being a prime example. MMs are located in the muscular layer of the GI tract and contribute to muscle repair and maintenance of GI motility. MMs are often in close proximity to the enteric nervous system, specifically near the enteric neurons and interstitial cells of Cajal (ICCs). Consequently, the anti-inflammatory function of MMs corresponds to the development and maintenance of neural networks in the GI tract. The capacity of MMs to shift from anti-inflammatory to proinflammatory states may contribute to the inflammatory aspects of various GI diseases and disorders such as diabetic gastroparesis or postoperative ileus, functional disorders such as irritable bowel syndrome, and organic diseases such as inflammatory bowel disease. We reviewed the current knowledge of MMs and their influence on neighboring cells due to their important role in the GI tract.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program in the Department of
Physiology and Biomedical Engineering, Mayo Clinic Graduate School of Biomedical Sciences,
200 First Street SW, Rochester, MN 55905, USA
| | - Negar Taheri
- Research Fellow in the Department of Physiology and
Biomedical Engineering, Mayo Clinic School of Graduate Medical Education, 200 First Street
SW, Rochester, MN 55905, USA
| | - Yuebo Zhang
- Department of Physiology and Biomedical Engineering, Mayo
Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical
Sciences, Doshisha Woman’s College of Liberal Arts, Kodo, Kyotanabe City, Kyoto 610-0395,
Japan
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering, Mayo
Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
15
|
Li J, Che M, Zhang B, Zhao K, Wan C, Yang K. The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189007. [PMID: 37907132 DOI: 10.1016/j.bbcan.2023.189007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system. Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kewei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Renga G, D'Onofrio F, Pariano M, Galarini R, Barola C, Stincardini C, Bellet MM, Ellemunter H, Lass-Flörl C, Costantini C, Napolioni V, Ehrlich AK, Antognelli C, Fini M, Garaci E, Nunzi E, Romani L. Bridging of host-microbiota tryptophan partitioning by the serotonin pathway in fungal pneumonia. Nat Commun 2023; 14:5753. [PMID: 37717018 PMCID: PMC10505232 DOI: 10.1038/s41467-023-41536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fiorella D'Onofrio
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati,", Perugia, Italy
| | - Carolina Barola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati,", Perugia, Italy
| | | | - Marina M Bellet
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Fini
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Rome, Italy.
| |
Collapse
|
17
|
Garrido-Trigo A, Corraliza AM, Veny M, Dotti I, Melón-Ardanaz E, Rill A, Crowell HL, Corbí Á, Gudiño V, Esteller M, Álvarez-Teubel I, Aguilar D, Masamunt MC, Killingbeck E, Kim Y, Leon M, Visvanathan S, Marchese D, Caratù G, Martin-Cardona A, Esteve M, Ordás I, Panés J, Ricart E, Mereu E, Heyn H, Salas A. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat Commun 2023; 14:4506. [PMID: 37495570 PMCID: PMC10372067 DOI: 10.1038/s41467-023-40156-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory intestinal diseases with perplexing heterogeneity in disease manifestation and response to treatment. While the molecular basis for this heterogeneity remains uncharacterized, single-cell technologies allow us to explore the transcriptional states within tissues at an unprecedented resolution which could further understanding of these complex diseases. Here, we apply single-cell RNA-sequencing to human inflamed intestine and show that the largest differences among patients are present within the myeloid compartment including macrophages and neutrophils. Using spatial transcriptomics in human tissue at single-cell resolution (CosMx Spatial Molecular Imaging) we spatially localize each of the macrophage and neutrophil subsets identified by single-cell RNA-sequencing and unravel further macrophage diversity based on their tissue localization. Finally, single-cell RNA-sequencing combined with single-cell spatial analysis reveals a strong communication network involving macrophages and inflammatory fibroblasts. Our data sheds light on the cellular complexity of these diseases and points towards the myeloid and stromal compartments as important cellular subsets for understanding patient-to-patient heterogeneity.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Marisol Veny
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Isabella Dotti
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Aina Rill
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Switzerland. SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Ángel Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Iris Álvarez-Teubel
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Daniel Aguilar
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - M Carme Masamunt
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | | | | | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ginevra Caratù
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Albert Martin-Cardona
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, Terrassa, Spain
| | - Maria Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de Barcelona, Terrassa, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panés
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisabetta Mereu
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| |
Collapse
|
18
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
19
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
20
|
Alhamad DW, Bensreti H, Dorn J, Hill WD, Hamrick MW, McGee-Lawrence ME. Aryl hydrocarbon receptor (AhR)-mediated signaling as a critical regulator of skeletal cell biology. J Mol Endocrinol 2022; 69:R109-R124. [PMID: 35900841 PMCID: PMC9448512 DOI: 10.1530/jme-22-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been implicated in regulating skeletal progenitor cells and the activity of bone-forming osteoblasts and bone-resorbing osteoclasts, thereby impacting bone mass and the risk of skeletal fractures. The AhR also plays an important role in the immune system within the skeletal niche and in the differentiation of mesenchymal stem cells into other cell lineages including chondrocytes and adipocytes. This transcription factor responds to environmental pollutants which can act as AhR ligands, initiating or interfering with various signaling cascades to mediate downstream effects, and also responds to endogenous ligands including tryptophan metabolites. This review comprehensively describes the reported roles of the AhR in skeletal cell biology, focusing on mesenchymal stem cells, osteoblasts, and osteoclasts, and discusses how AhR exhibits sexually dimorphic effects in bone. The molecular mechanisms mediating AhR's downstream effects are highlighted to emphasize the potential importance of targeting this signaling cascade in skeletal disorders.
Collapse
Affiliation(s)
- Dima W. Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology, Medical University of South Carolina, Thurmond/Gazes Bldg-Room 506A, 30 Courtenay Drive, Charleston, SC 29403 Charleston, SC, USA
- Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| |
Collapse
|
21
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
22
|
Yu HX, Feng Z, Lin W, Yang K, Liu RQ, Li JQ, Liu XY, Pei M, Yang HT. Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. Aging Dis 2022; 13:732-752. [PMID: 35656117 PMCID: PMC9116921 DOI: 10.14336/ad.2021.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a pathological manifestation of wound healing that replaces dead/damaged tissue with collagen-rich scar tissue to maintain homeostasis, and complications from fibrosis contribute to nearly half of all deaths in the industrialized world. Ageing is closely associated with a progressive decline in organ function, and the prevalence of tissue fibrosis dramatically increases with age. Despite the heavy clinical and economic burden of organ fibrosis as the population ages, to date, there is a paucity of therapeutic strategies that are specifically designed to slow fibrosis. Aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that exacerbates aging phenotypes in different tissues that has been brought back into the spotlight again with economic development since AhR could interact with persistent organic pollutants derived from incomplete waste combustion. In addition, gut microbiota dysbiosis plays a pivotal role in the pathogenesis of numerous diseases, and microbiota-associated tryptophan metabolites are dedicated contributors to fibrogenesis by acting as AhR ligands. Therefore, a better understanding of the effects of tryptophan metabolites on fibrosis modulation through AhR may facilitate the exploitation of new therapeutic avenues for patients with organ fibrosis. In this review, we primarily focus on how tryptophan-derived metabolites are involved in renal fibrosis, idiopathic pulmonary fibrosis, hepatic fibrosis and cardiac fibrosis. Moreover, a series of ongoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Hang-Xing Yu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Feng
- 3Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Lin
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- 4Kidney Disease Treatment Center, The first affiliated hospital of Henan university of CM, Zhengzhou, Henan, China
| | - Rui-Qi Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia-Qi Li
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
23
|
Simón-Fuentes M, Sánchez-Ramón S, Fernández-Paredes L, Alonso B, Guevara-Hoyer K, Vega MA, Corbí AL, Domínguez-Soto Á. Intravenous Immunoglobulins Promote an Expansion of Monocytic Myeloid-Derived Suppressor Cells (MDSC) in CVID Patients. J Clin Immunol 2022; 42:1093-1105. [PMID: 35486340 PMCID: PMC9053130 DOI: 10.1007/s10875-022-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency disorders (CVID), the most common primary immune deficiency, includes heterogeneous syndromes characterized by hypogammaglobulinemia and impaired antibody responses. CVID patients frequently suffer from recurrent infections and inflammatory conditions. Currently, immunoglobulin replacement therapy (IgRT) is the first-line treatment to prevent infections and aminorate immune alterations in CVID patients. Intravenous Immunoglobulin (IVIg), a preparation of highly purified poly-specific IgG, is used for treatment of immunodeficiencies as well as for autoimmune and inflammatory disorders, as IVIg exerts immunoregulatory and anti-inflammatory actions on innate and adaptive immune cells. To determine the mechanism of action of IVIg in CVID in vivo, we determined the effect of IVIg infusion on the transcriptome of peripheral blood mononuclear cells from CVID patients, and found that peripheral blood monocytes are primary targets of IVIg in vivo, and that IVIg triggers the acquisition of an anti-inflammatory gene profile in human monocytes. Moreover, IVIg altered the relative proportions of peripheral blood monocyte subsets and enhanced the proportion of CD14+ cells with a transcriptional, phenotypic, and functional profile that resembles that of monocytic myeloid-derived suppressor cells (MDSC). Therefore, our results indicate that CD14 + MDSC-like cells might contribute to the immunoregulatory effects of IVIg in CVID and other inflammatory disorders.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | | | | | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.,Hospital Universitario Clínico San Carlos, IML and IdSSC, Madrid, Spain
| | | | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Angel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - Ángeles Domínguez-Soto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Xia Y, Zhang Q, Ye Y, Wu X, He F, Peng Y, Yin Y, Ren W. Melatonergic signalling instructs transcriptional inhibition of IFNGR2 to lessen interleukin-1β-dependent inflammation. Clin Transl Med 2022; 12:e716. [PMID: 35184395 PMCID: PMC8858632 DOI: 10.1002/ctm2.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immunotransmitters (e.g., neurotransmitters and neuromodulators) could orchestrate diverse immune responses; however, the elaborated mechanism by which melatonergic activation governs inflammation remains less defined. METHODS Primary macrophages, various cell lines, and Pasteurella multocida (PmCQ2)-infected mice were respectively used to illustrate the influence of melatonergic signalling on inflammation in vitro and in vivo. A series of methods (e.g., RNA-seq, metabolomics, and genetic manipulation) were conducted to reveal the mechanism whereby melatonergic signalling reduces macrophage inflammation. RESULTS Here, we demonstrate that melatonergic activation substantially lessens interleukin (IL)-1β-dependent inflammation. Treatment of macrophages with melatonin rewires metabolic program, as well as remodels signalling pathways which depends on interferon regulatory factor (IRF) 7. Mechanistically, melatonin acts via membrane receptor (MT) 1 to increase heat shock factor (Hsf) 1 expression through lowering the inactive glycogen synthase kinase (GSK3) β, thereby transcriptionally inhibiting interferon (IFN)-γ receptor (IFNGR) 2 and ultimately causing defective canonical signalling events [Janus kinase (JAK) 1/2-signal transducer and activator of transcription (STAT) 1-IRF7] and lower IL-1β production in macrophages. Moreover, we find that melatonin amplifies host protective responses to PmCQ2 infection-induced pneumonia. CONCLUSIONS Our conceptual framework provides potential therapeutic targets to prevent and/or treat inflammatory diseases associating with excessive IL-1β production.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Laboratory of Lingnan Modern AgricultureGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Qingzhuo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Laboratory of Lingnan Modern AgricultureGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yuyi Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Laboratory of Lingnan Modern AgricultureGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Laboratory of Lingnan Modern AgricultureGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Fang He
- College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yuanyi Peng
- College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Laboratory of Lingnan Modern AgricultureGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
Melnikov M, Sviridova A, Rogovskii V, Boyko A, Pashenkov M. The role of macrophages in the development of neuroinflammation in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:51-56. [DOI: 10.17116/jnevro202212205151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Baranwal G, Pilla R, Goodlett BL, Coleman AK, Arenaz CM, Jayaraman A, Rutkowski JM, Alaniz RC, Mitchell BM. Common Metabolites in Two Different Hypertensive Mouse Models: A Serum and Urine Metabolome Study. Biomolecules 2021; 11:1387. [PMID: 34572600 PMCID: PMC8467937 DOI: 10.3390/biom11091387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Recent metabolomics studies have identified a wide array of microbial metabolites and metabolite pathways that are significantly altered in hypertension. However, whether these metabolites play an active role in pathogenesis of hypertension or are altered because of this has yet to be determined. In the current study, we hypothesized that metabolite changes common between hypertension models may unify hypertension's pathophysiology with respect to metabolites. We utilized two common mouse models of experimental hypertension: L-arginine methyl ester hydrochloride (L-NAME)/high-salt-diet-induced hypertension (LSHTN) and angiotensin II induced hypertension (AHTN). To identify common metabolites that were altered across both models, we performed untargeted global metabolomics analysis in serum and urine and the resulting data were analyzed using MetaboAnalyst software and compared to control mice. A total of 41 serum metabolites were identified as being significantly altered in any hypertensive model compared to the controls. Of these compounds, 14 were commonly changed in both hypertensive groups, with 4 significantly increased and 10 significantly decreased. In the urine, six metabolites were significantly altered in any hypertensive group with respect to the control; however, none of them were common between the hypertensive groups. These findings demonstrate that a modest, but potentially important, number of serum metabolites are commonly altered between experimental hypertension models. Further studies of the newly identified metabolites from this untargeted metabolomics analysis may lead to a greater understanding of the association between gut dysbiosis and hypertension.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| | - Rachel Pilla
- Department of Small Animal Clinical Science, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA;
| | - Bethany L. Goodlett
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| | - Aja K. Coleman
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| | - Cristina M. Arenaz
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| | - Arul Jayaraman
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (A.J.); (R.C.A.)
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (A.J.); (R.C.A.)
| | - Brett M. Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77847, USA; (G.B.); (B.L.G.); (A.K.C.); (C.M.A.); (J.M.R.)
| |
Collapse
|
27
|
Karmakar S, Lal G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Am J Cancer Res 2021; 11:5296-5312. [PMID: 33859748 PMCID: PMC8039959 DOI: 10.7150/thno.55986] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter known to affect emotion, behavior, and cognition, and its effects are mostly studied in neurological diseases. The crosstalk between the immune cells and the nervous system through serotonin and its receptors (5-HTRs) in the tumor microenvironment and the secondary lymphoid organs are known to affect cancer pathogenesis. However, the molecular mechanism of - alteration in the phenotype and function of - innate and adaptive immune cells by serotonin is not well explored. In this review, we discuss how serotonin and serotonin receptors modulate the phenotype and function of various immune cells, and how the 5-HT-5-HTR axis modulates antitumor immunity. Understanding how 5-HT and immune signaling are involved in tumor immunity could help improve therapeutic strategies to control cancer progression and metastasis.
Collapse
|
28
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|