1
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01053-9. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2024:gutjnl-2024-332504. [PMID: 39266053 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Sung EA, Dozmorov MG, Song S, Aung T, Park MH, Sime PJ, Chae WJ. Ablation of LRP6 in alpha-smooth muscle actin-expressing cells abrogates lung inflammation and fibrosis upon bleomycin-induced lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611327. [PMID: 39314349 PMCID: PMC11418957 DOI: 10.1101/2024.09.05.611327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor for Wnt ligands. Tissue fibrosis is a progressive pathological process with excessive extracellular matrix proteins (ECM) deposition. Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM production. Here we found that Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts. We demonstrated that genetic deletion of LRP6 in αSMA-expressing cells using Acta2 -cre Lrp6 fl/fl ( Lrp6 AKO ) mice abrogated bleomycin (BLM)-induced lung inflammation and fibrosis phenotype, suggesting an important role of LRP6 in modulating inflammation and fibrotic processes in the lung. Our results highlight the crucial role of LRP6 in fibroblasts in regulating inflammation and fibrosis upon BLM-induced lung injury.
Collapse
|
4
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
5
|
Ma C, Huang J, Zheng Y, Na Y, Wei J, Shan J, Meng K, Zhang X, Zhang S, Wen Y, Ding J. Anti-TL1A monoclonal antibody modulates the dysregulation of Th1/Th17 cells and attenuates granuloma formation in sarcoidosis by inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 137:112360. [PMID: 38852524 DOI: 10.1016/j.intimp.2024.112360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Sarcoidosis is a systemic granulomatous disease characterized by non-caseating epithelioid cell granulomas. One of its immunological hallmarks is the differentiation of CD4 + naïve T cells into Th1/Th17 cells, accompanied by the release of numerous pro-inflammatory cytokines. The TL1A/DR3 signaling pathway plays a crucial role in activating effector lymphocytes, thereby triggering pro-inflammatory responses. The primary aim of this investigation was to scrutinize the impact of anti-TL1A monoclonal antibody on the dysregulation of Th1/Th17 cells and granuloma formation in sarcoidosis. Initially, the abnormal activation of the TL1A/DR3 signaling pathway in pulmonary tissues of sarcoidosis patients was confirmed using qPCR and immunohistochemistry techniques. Subsequently, employing a murine model of sarcoidosis, the inhibitory effects of anti-TL1A monoclonal antibody on the TL1A/DR3 signaling pathway in sarcoidosis were investigated through qPCR, immunohistochemistry, and Western blot experiments. The influence of anti-TL1A monoclonal antibody on granulomas was assessed through HE staining, while their effects on sarcoidosis Th1/Th17 cells and associated cytokine mRNA levels were evaluated using flow cytometry and qPCR, respectively. Immunofluorescence and Western blot experiments corroborated the inhibitory effects of anti-TL1A monoclonal antibody on the aberrant activation of the PI3K/AKT signaling pathway in sarcoidosis. The findings of this study indicate that the TL1A/DR3 signaling pathway is excessively activated in sarcoidosis. Anti-TL1A monoclonal antibody effectively inhibit this abnormal activation in sarcoidosis, thereby alleviating the dysregulation of Th1/Th17 cells and reducing the formation of pulmonary granulomas. This effect may be associated with the inhibition of the downstream PI3K/AKT signaling pathway. Anti-TL1A monoclonal antibody hold promise as a potential novel therapeutic intervention for sarcoidosis.
Collapse
Affiliation(s)
- Chengxing Ma
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiayi Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Zheng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuqi Na
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jia Wei
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiajia Shan
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Kaifang Meng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xian Zhang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Shiyun Zhang
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Yanting Wen
- Department of Basic Medicine, Center of Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| | - Jingjing Ding
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
6
|
Liu X, Zhang J, Zhang D, Pan Y, Zeng R, Xu C, Shi S, Xu J, Qi Q, Dong X, Wang J, Liu T, Dong L. Necroptosis plays a role in TL1A-induced airway inflammation and barrier damage in asthma. Respir Res 2024; 25:271. [PMID: 38987753 PMCID: PMC11238433 DOI: 10.1186/s12931-024-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Shuochuan Shi
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Jiawei Xu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Qian Qi
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Xueli Dong
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
8
|
Pires S, Longman RS. Sounding the alarm in the lung with TL1A. J Exp Med 2024; 221:e20240389. [PMID: 38597953 PMCID: PMC11010314 DOI: 10.1084/jem.20240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Environmental airborne antigens are central to the development of allergic asthma, but the cellular processes that trigger disease remain incompletely understood. In this report, Schmitt et al. (https://doi.org/10.1084/jem.20231236) identify TNF-like protein 1A (TL1A) as an epithelial alarmin constitutively expressed by a subset of lung epithelial cells, which is released in response to airborne microbial challenge and synergizes with IL-33 to drive allergic disease.
Collapse
Affiliation(s)
- Silvia Pires
- Division of Gastroenterology and Hepatology, Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Randy S. Longman
- Division of Gastroenterology and Hepatology, Department of Medicine, Jill Roberts Center and Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Solitano V, Jairath V, Ungaro F, Peyrin-Biroulet L, Danese S. TL1A inhibition for inflammatory bowel disease treatment: From inflammation to fibrosis. MED 2024; 5:386-400. [PMID: 38574740 DOI: 10.1016/j.medj.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
The pivotal role of TL1A in modulating immune pathways crucial for inflammatory bowel disease (IBD) and intestinal fibrosis offers a promising therapeutic target. Phase 2 trials (TUSCANY and ARTEMIS-UC) evaluating an anti-TL1A antibody show progress in expanding IBD therapeutic options. First-in-human data reveal reduced expression of genes associated with extracellular matrix remodeling and fibrosis post-anti-TL1A treatment. Investigational drug TEV-48574, potentially exerting dual antifibrotic and anti-inflammatory effects, is undergoing a phase 2 basket study in both ulcerative colitis (UC) and Crohn disease (CD). Results are eagerly awaited, marking advancements in IBD therapeutics. This critical review comprehensively examines the existing literature, illuminating TL1A and the intricate role of DR3 in IBD, emphasizing the evolving therapeutic landscape and ongoing clinical trials, with potential implications for more effective IBD management.
Collapse
Affiliation(s)
- Virginia Solitano
- Division of Gastroenterology, Western University, London, ON, Canada; Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Federica Ungaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy; Division of Immunology, Transplantation, and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France; Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France; INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France; FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France; Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD Center, Neuilly sur Seine, France; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
10
|
Liman N, Lanasa D, Meylan F, Park JH. The ever-expanding role of cytokine receptor DR3 in T cells. Cytokine 2024; 176:156540. [PMID: 38359559 PMCID: PMC10895922 DOI: 10.1016/j.cyto.2024.156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Death Receptor 3 (DR3) is a cytokine receptor of the Tumor Necrosis Factor receptor superfamily that plays a multifaceted role in both innate and adaptive immunity. Based on the death domain motif in its cytosolic tail, DR3 had been proposed and functionally affirmed as a trigger of apoptosis. Further studies, however, also revealed roles of DR3 in other cellular pathways, including inflammation, survival, and proliferation. DR3 is expressed in various cell types, including T cells, B cells, innate lymphocytes, myeloid cells, fibroblasts, and even outside the immune system. Because DR3 is mainly expressed on T cells, DR3-mediated immune perturbations leading to autoimmunity and other diseases were mostly attributed to DR3 activation of T cells. However, which T cell subset and what T effector functions are controlled by DR3 to drive these processes remain incompletely understood. DR3 engagement was previously found to alter CD4 T helper subset differentiation, expand the Foxp3+ Treg cell pool, and maintain intraepithelial γδ T cells in the gut. Recent studies further unveiled a previously unacknowledged aspect of DR3 in regulating innate-like invariant NKT (iNKT) cell activation, expanding the scope of DR3-mediated immunity in T lineage cells. Importantly, in the context of iNKT cells, DR3 ligation exerted costimulatory effects in agonistic TCR signaling, unveiling a new regulatory framework in T cell activation and proliferation. The current review is aimed at summarizing such recent findings on the role of DR3 on conventional T cells and innate-like T cells and discussing them in the context of immunopathogenesis.
Collapse
Affiliation(s)
- Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Françoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, NIH, Bethesda, MD 20892, United States
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
11
|
Zhang D, Zhang J, Zhang J, Ji X, Qi Q, Xu J, Pan Y, Liu X, Sun F, Zeng R, Dong L. Identification of a novel role for TL1A/DR3 deficiency in acute respiratory distress syndrome that exacerbates alveolar epithelial disruption. Respir Res 2023; 24:182. [PMID: 37434162 DOI: 10.1186/s12931-023-02488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Alveolar epithelial barrier is a potential therapeutic target for acute respiratory distress syndrome (ARDS). However, an effective intervention against alveolar epithelial barrier has not been developed. Here, based on single-cell RNA and mRNA sequencing results, death receptor 3 (DR3) and its only known ligand tumor necrosis factor ligand-associated molecule 1A (TL1A) were significantly reduced in epithelium from an ARDS mice and cell models. The apparent reduction in the TL1A/DR3 axis in lungs from septic-ARDS patients was correlated with the severity of the disease. The examination of knockout (KO) and alveolar epithelium conditional KO (CKO) mice showed that TL1A deficiency exacerbated alveolar inflammation and permeability in lipopolysaccharide (LPS)-induced ARDS. Mechanistically, TL1A deficiency decreased glycocalyx syndecan-1 and tight junction-associated zonula occludens 3 by increasing cathepsin E level for strengthening cell-to-cell permeability. Additionally, DR3 deletion aggravated barrier dysfunction and pulmonary edema in LPS-induced ARDS through the above mechanisms based on the analyses of DR3 CKO mice and DR3 overexpression cells. Therefore, the TL1A/DR3 axis has a potential value as a key therapeutic signaling for the protection of alveolar epithelial barrier.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jianning Zhang
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiang Ji
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qian Qi
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaofei Liu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Fang Sun
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
12
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Colic J, Campochiaro C, Hughes M, Matucci Cerinic M, Dagna L. Investigational drugs for the treatment of scleroderma: what's new? Expert Opin Investig Drugs 2023; 32:601-614. [PMID: 37526079 DOI: 10.1080/13543784.2023.2242762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an orphan, chronic, autoimmune, fibrotic disease with unknown etiology characterized by progressive fibrosis of the skin and internal organs. SSc has the highest mortality, the deadliest among the connective tissue diseases, despite the introduction of new treatment options in the past decades. AREAS COVERED The aim of the current systematic review was to investigate new targeted therapy and their impact on disease progression, mainly focusing on phase I and II clinical trials within the past three years. EXPERT OPINION Despite recent groundbreaking advancements in understanding SSc pathophysiology, early diagnosis and early introduction of effective targeted treatments within the optimal window of opportunity to prevent irreversible disease damage still represents a significant clinical challenge. Ongoing significant research for new molecular and epigenetics pathways is of fundamental importance to offer new perspectives on disease phenotype and for the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Jelena Colic
- Department of Rheumatology, Institute of Rheumatology, Belgrade, Serbia
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, England
| | - Marco Matucci Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Division of Rheumatology, Department of Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC) and Denothe Centre, University of Florence, Florence, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
15
|
Bartlett NW, Feghali-Bostwick C, Gunst SJ. Call for Papers: "Targeting Airway Immunity in Lung Disease". Am J Physiol Lung Cell Mol Physiol 2023; 324:L48-L52. [PMID: 36472349 DOI: 10.1152/ajplung.00375.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nathan W Bartlett
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Wieczfinska J, Pawliczak R. Relaxin Affects Airway Remodeling Genes Expression through Various Signal Pathways Connected with Transcription Factors. Int J Mol Sci 2022; 23:ijms23158413. [PMID: 35955554 PMCID: PMC9368845 DOI: 10.3390/ijms23158413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fibrosis is one of the parameters of lung tissue remodeling in asthma. Relaxin has emerged as a natural suppressor of fibrosis, showing efficacy in the prevention of a multiple models of fibrosis. Therefore, the aim of this study was to analyze the aptitudes of relaxin, in the context of its immunomodulatory properties, in the development of airway remodeling. WI-38 and HFL1 fibroblasts, as well as epithelial cells (NHBE), were incubated with relaxin. Additionally, remodeling conditions were induced with two serotypes of rhinovirus (HRV). The expression of the genes contributing to airway remodeling were determined. Moreover, NF-κB, c-Myc, and STAT3 were knocked down to analyze the pathways involved in airway remodeling. Relaxin decreased the mRNA expression of collagen I and TGF-β and increased the expression of MMP-9 (p < 0.05). Relaxin also decreased HRV-induced expression of collagen I and α-SMA (p < 0.05). Moreover, all the analyzed transcription factors—NF-κB, c-Myc, and STAT3—have shown its influence on the pathways connected with relaxin action. Though relaxin requires further study, our results suggest that this natural compound offers great potential for inhibition of the development, or even reversing, of factors related to airway remodeling. The presented contribution of the investigated transcription factors in this process additionally increases its potential possibilities through a variety of its activity pathways.
Collapse
|
17
|
Zhang D, Yang H, Dong XL, Zhang JT, Liu XF, Pan Y, Zhang J, Xu JW, Wang ZH, Cui WJ, Dong L. TL1A/DR3 Axis, A Key Target of TNF-a, Augments the Epithelial–Mesenchymal Transformation of Epithelial Cells in OVA-Induced Asthma. Front Immunol 2022; 13:854995. [PMID: 35359966 PMCID: PMC8963920 DOI: 10.3389/fimmu.2022.854995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Tumor necrosis factor (TNF)-like cytokine 1A (TL1A), a member of the TNF family, exists in the form of membrane-bound (mTL1A) and soluble protein (sTL1A). TL1A binding its only known functional receptor death domain receptor 3 (DR3) affects the transmission of various signals. This study first proposed that the TL1A/DR3 axis was significantly upregulated in patients and mice with both asthma and high TNF-a expression and in TNF-a-stimulated epithelial Beas-2B cells. Two independent approaches were used to demonstrate that the TL1A/DR3 axis of mice was strongly correlated with TNF-a in terms of exacerbating asthmatic epithelial–mesenchymal transformation (EMT). First, high expression levels of EMT proteins (e.g., collagen I, fibronectin, N-cadherin, and vimentin) and TL1A/DR3 axis were observed when mice airways were stimulated by recombinant mouse TNF-a protein. Moreover, EMT protein and TL1A/DR3 axis expression synchronously decreased after mice with OVA-induced asthma were treated with infliximab by neutralizing TNF-a activity. Furthermore, the OVA-induced EMT of asthmatic mice was remarkably improved upon the deletion of the TL1A/DR3 axis by knocking out the TL1A gene. TL1A siRNA remarkably intervened EMT formation induced by TNF-a in the Beas-2B cells. In addition, EMT was induced by the addition of high concentrations of recombinant human sTL1A with the cell medium. The TL1A overexpression via pc-mTL1A in vitro remarkably increased the EMT formation induced by TNF-a. Overall, these findings indicate that the TL1A/DR3 axis may have a therapeutic role for asthmatic with high TNF-a level.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Li Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Tao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fei Liu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Zhang
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jia-Wei Xu
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Zi-Han Wang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Cui
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
- *Correspondence: Liang Dong,
| |
Collapse
|
18
|
Zhang J, Zhang D, Pan Y, Liu X, Xu J, Qiao X, Cui W, Dong L. The TL1A-DR3 Axis in Asthma: Membrane-Bound and Secreted TL1A Co-Determined the Development of Airway Remodeling. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:233-253. [PMID: 35255540 PMCID: PMC8914606 DOI: 10.4168/aair.2022.14.2.233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Purpose Tumor necrosis factor-like ligand 1A (TL1A), especially its secreted form, has been shown to contribute to eosinophilic inflammation and mucus production, cardinal features of asthma, through its receptor, death receptor 3 (DR3). However, the role of the TL1A-DR3 axis in asthma, especially in terms of airway remodeling, has not yet been fully understood. Methods The present study investigated the expression and secretion of TL1A in the lung and human bronchial epithelial cells. DR3 small interfering RNA (siRNA), TL1A siRNA, and truncated plasmids were used respectively to identify the function of the TL1A-DR3 axis in vitro. To further validate the roles of the TL1A-DR3 axis in asthma, we collected airway biopsies and sputa from asthmatic patients and constructed a mouse model following rTL1A administration, DR3 knockdown, and TL1A knockout, the asthma-related inflammatory response and the pathological changes in airways were analyzed using various experimental methods. Associated signaling pathways downstream of TL1A knockout in the mouse model were analyzed using RNA sequencing. Results TL1A, especially its non-secreted form (nsTL1A) was involved in the remodeling process in asthmatics’ airways. Knockdown of TL1A or its receptor DR3 decreased the expression of fibrosis-associated protein in BEAS-2B cells. Reversely, overexpression of nsTL1A in airway epithelial cells facilitated the transforming growth factor-β-induced remodeling progress. In the asthma mouse model, activating the TL1A-DR3 axis contributes to airway inflammation, remodeling, and tissue destruction. Reciprocally, DR3 knockdown or TL1A knockout partly reverses airway remodeling in the asthma model induced by ovalbumin. Conclusions Our results confirm differential TL1A expression (including its secreted and non-secreted form) in asthma, which modulates remodeling. The shared mechanism of action by which nsTL1A and secreted TL1A exert their effects on asthma development might be mediated via the nuclear factor-κB pathway. The TL1A-DR3 axis presents a promising therapeutic target in asthma.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiawei Xu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
19
|
Steele H, Song B, Willicut A, Grimes HL, Herro R. Isolation of primary immune cells from fibrotic skin, esophageal, and gut tissue. J Immunol Methods 2021; 497:113107. [PMID: 34352237 DOI: 10.1016/j.jim.2021.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 11/15/2022]
Abstract
Understanding the interplay between immune and structural cells is important for studying fibrosis and inflammation; however, primary immune cell isolation from organs that are typically enriched in stromal cells, like the lung, esophagus, or gut, proves to be an ongoing challenge. In fibrotic conditions, this challenge becomes even greater as infiltrating cells become trapped in the robust extracellular matrix (ECM). This protocol details a method to isolate cells at high yield from stroma-rich organs that can be used for further analyses via flow cytometry, stimulation, or culturing. Validation of this method is confirmed by flow cytometry data assessing immune cell populations of interest. This protocol can be completed in approximately 5-6 h.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Willicut
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Steele H, Sachen K, McKnight AJ, Soloff R, Herro R. Targeting TL1A/DR3 Signaling Offers a Therapeutic Advantage to Neutralizing IL13/IL4Rα in Muco-Secretory Fibrotic Disorders. Front Immunol 2021; 12:692127. [PMID: 34305924 PMCID: PMC8299868 DOI: 10.3389/fimmu.2021.692127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023] Open
Abstract
Mucus secretion is an important feature of asthma that highly correlates with morbidity. Current therapies, including administration of mucolytics and anti-inflammatory drugs, show limited effectiveness and durability, underscoring the need for novel effective and longer lasting therapeutic approaches. Here we show that mucus production in the lungs is regulated by the TNF superfamily member 15 (TL1A) acting through the mucus-inducing cytokine IL-13. TL1A induces IL13 expression by innate lymphoid cells leading to mucus production, in addition to promoting airway inflammation and fibrosis. Reciprocally, neutralization of IL13 signaling through its receptor (IL4Rα), completely reverses TL1A-induced mucus secretion, while maintaining airway inflammation and fibrosis. Importance of TL1A is further demonstrated using a preclinical asthma model induced by chronic house dust mite exposure where TL1A neutralization by genetic deletion or antagonistic blockade of its receptor DR3 protected against mucus production and fibrosis. Thus, TL1A presents a promising therapeutic target that out benefits IL13 in reversing mucus production, airway inflammation and fibrosis, cardinal features of severe asthma in humans.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kacey Sachen
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA, United States
| | | | - Rachel Soloff
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA, United States
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|