1
|
Nicosia M, Valujskikh A. Recognizing Complexity of CD8 T Cells in Transplantation. Transplantation 2024; 108:2186-2196. [PMID: 38637929 PMCID: PMC11489323 DOI: 10.1097/tp.0000000000005001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The major role of CD8 + T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8 + T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8 + T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
2
|
Drachenberg CB, Buettner-Herold M, Aguiar PV, Horsfield C, Mikhailov AV, Papadimitriou JC, Seshan SV, Perosa M, Boggi U, Uva P, Rickels M, Grzyb K, Arend L, Cuatrecasas M, Toniolo MF, Farris AB, Renaudin K, Zhang L, Roufousse C, Gruessner A, Gruessner R, Kandaswamy R, White S, Burke G, Cantarovich D, Parsons RF, Cooper M, Kudva YC, Kukla A, Haririan A, Parajuli S, Merino-Torres JF, Argente-Pla M, Meier R, Dunn T, Ugarte R, Rao JS, Vistoli F, Stratta R, Odorico J. Banff 2022 pancreas transplantation multidisciplinary report: Refinement of guidelines for T cell-mediated rejection, antibody-mediated rejection and islet pathology. Assessment of duodenal cuff biopsies and noninvasive diagnostic methods. Am J Transplant 2024; 24:362-379. [PMID: 37871799 DOI: 10.1016/j.ajt.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The Banff pancreas working schema for diagnosis and grading of rejection is widely used for treatment guidance and risk stratification in centers that perform pancreas allograft biopsies. Since the last update, various studies have provided additional insight regarding the application of the schema and enhanced our understanding of additional clinicopathologic entities. This update aims to clarify terminology and lesion description for T cell-mediated and antibody-mediated allograft rejections, in both active and chronic forms. In addition, morphologic and immunohistochemical tools are described to help distinguish rejection from nonrejection pathologies. For the first time, a clinicopathologic approach to islet pathology in the early and late posttransplant periods is discussed. This update also includes a discussion and recommendations on the utilization of endoscopic duodenal donor cuff biopsies as surrogates for pancreas biopsies in various clinical settings. Finally, an analysis and recommendations on the use of donor-derived cell-free DNA for monitoring pancreas graft recipients are provided. This multidisciplinary effort assesses the current role of pancreas allograft biopsies and offers practical guidelines that can be helpful to pancreas transplant practitioners as well as experienced pathologists and pathologists in training.
Collapse
Affiliation(s)
| | - Maike Buettner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital, Erlangen, Germany
| | | | - Catherine Horsfield
- Department of Histopathology/Cytology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexei V Mikhailov
- Department of Pathology, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - John C Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Maryland, USA
| | - Surya V Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Marcelo Perosa
- Beneficência Portuguesa and Bandeirantes Hospital of São Paulo, São Paulo, Brazil
| | - Ugo Boggi
- Department of Surgery, University of Pisa, Pisa, The province of Pisa, Italy
| | - Pablo Uva
- Kidney/Pancreas Transplant Program, Instituto de Trasplantes y Alta Complejidad (ITAC - Nephrology), Buenos Aires, Argentina
| | - Michael Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Philadelphia, USA
| | - Krzyztof Grzyb
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lois Arend
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lizhi Zhang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Candice Roufousse
- Department of Immunology and Inflammation, Imperial College of London, London, United Kingdom
| | - Angelika Gruessner
- Department of Nephrology/Medicine, State University of New York, New York, USA
| | - Rainer Gruessner
- Department of Surgery, State University of New York, New York, USA
| | - Raja Kandaswamy
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Steven White
- Department of Surgery, Newcastle Upon Tyne NHS Foundation Trust, Newcastle upon Tyne, England, United Kingdom
| | - George Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Ronald F Parsons
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew Cooper
- Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksandra Kukla
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Abdolreza Haririan
- Department of Medicine, University of Maryland School of Medicine, Maryland, USA
| | - Sandesh Parajuli
- Department of Medicine, UWHealth Transplant Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juan Francisco Merino-Torres
- Department of Endocrinology and Nutrition, University Hospital La Fe, La Fe Health Research Institute, University of Valencia, Valencia, Spain
| | - Maria Argente-Pla
- University Hospital La Fe, Health Research Institute La Fe, Valencia, Spain
| | - Raphael Meier
- Department of Surgery, University of Maryland School of Medicine, Maryland, USA
| | - Ty Dunn
- Division of Transplantation, Department of Surgery, Penn Transplant Institute, University of Pennsylvania, Pennsylvania, Philadelphia, USA
| | - Richard Ugarte
- Department of Medicine, University of Maryland School of Medicine, Maryland, USA
| | - Joseph Sushil Rao
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA; Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Fabio Vistoli
- Department of Surgery, University of Pisa, Pisa, The province of Pisa, Italy
| | - Robert Stratta
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, UWHealth Transplant Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Ma Y, Yang Y, Dai H, Yan C, Yu S, Zhang S, Lin Z, Chen J, Yu G, Zhang J, Yin P, Lu J, Shi C, Ye Z, Ruan Q, Qi Z, Zhuang G. TIPE2 deficiency prolongs mouse heart allograft survival by inhibiting immature DCs-induced Treg generation. Clin Immunol 2023; 252:109636. [PMID: 37150242 DOI: 10.1016/j.clim.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
It has been reported that deletion of tumor necrosis factor-α-induced protein-8 like 2 (TNFAIP8L2, TIPE2) facilitates the activation of T-cell receptors. However, the role of TIPE2 in T-cell-mediated acute transplant rejection remains unclear. To illustrate the underlying cellular mechanisms, we transplanted BALB/c hearts into C57BL/6 wild-type C57BL/6 mice or mice deficient for TIPE2 (TIPE2-/-) and found that TIPE2-/- recipient mice showed significantly prolonged survival of heart allografts and suppressed maturation of CD11c+ dendritic cells (DCs), which largely abolished the activation and proliferation of alloreactive T cells and their cytotoxic activity. TIPE2-/- DCs increased CD4+Foxp3+CD127- Treg generation, likely by inhibiting DCs maturation and CD80 and CD86 expression. Administration of anti-CD25 abolished the allograft survival induced by TIPE2 deficiency. Moreover, TIPE2 deficiency increased IL-10 production in T cells and in recipient serum and allografts. Mechanistic studies revealed that TIPE2-/- restrained the maturation of DCs via inhibition of PI3K/AKT phosphorylation during alloantigen stimulation. Taken together, TIPE2 deficiency in recipient mice inhibited acute rejection by increasing Tregs generated by immature DCs. Thus, TIPE2 could be a therapeutic target for suppressing rejection in organ transplantation.
Collapse
Affiliation(s)
- Yunhan Ma
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China; School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Yan Yang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410000, China
| | - Changxiu Yan
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shengnan Yu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuaishuai Zhang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361001, China
| | - Jinfeng Chen
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gaoyi Yu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jing Zhang
- Department of medical clinical laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Ping Yin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361001, China
| | - Jianhong Lu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Shi
- The Department of Oncology, Jiujiang No.1 People's Hospital, Jiujiang 332000, China
| | - Zhijian Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen 361000, China
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, China..
| | - Zhongquan Qi
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China; Wuzhou Workers' Hospital, Wuzhou 543000, China.
| | - Guohong Zhuang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Rovira J, Ramirez-Bajo MJ, Bañón-Maneus E, Hierro-Garcia N, Lazo-Rodriguez M, Piñeiro GJ, Montagud-Marrahi E, Cucchiari D, Revuelta I, Cuatrecasas M, Campistol JM, Ricart MJ, Diekmann F, Garcia-Criado A, Ventura-Aguiar P. Immune Profiling of Peripheral Blood Mononuclear Cells at Pancreas Acute Rejection Episodes in Kidney-Pancreas Transplant Recipients. Transpl Int 2022; 35:10639. [PMID: 36466442 PMCID: PMC9715609 DOI: 10.3389/ti.2022.10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Profiling of circulating immune cells provides valuable insight to the pathophysiology of acute rejection in organ transplantation. Herein we characterized the peripheral blood mononuclear cells in simultaneous kidney-pancreas transplant recipients. We conducted a retrospective analysis in a biopsy-matched cohort (n = 67) and compared patients with biopsy proven acute rejection (BPAR; 41%) to those without rejection (No-AR). We observed that CD3+ T cells, both CD8+ and CD4+, as well as CD19+ B cells were increased in patients with BPAR, particularly in biopsies performed in the early post-transplant period (<3 months). During this period immune subsets presented a good discriminative ability (CD4+ AUC 0.79; CD8+ AUC 0.80; B cells AUC 0.86; p < 0.05) and outperformed lipase (AUC 0.62; p = 0.12) for the diagnosis of acute rejection. We further evaluated whether this could be explained by differences in frequencies prior to transplantation. Patients presenting with early post-transplant rejection (<3 months) had a significant increase in T-cell frequencies pre-transplant, both CD4+ T cells and CD8+ T cells (p < 0.01), which were associated with a significant inferior rejection-free graft survival. T cell frequencies in peripheral blood correlated with pancreas acute rejection episodes, and variations prior to transplantation were associated with pancreas early acute rejection.
Collapse
Affiliation(s)
- Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Maria Jose Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Elisenda Bañón-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Natalia Hierro-Garcia
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gaston J. Piñeiro
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Enrique Montagud-Marrahi
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - David Cucchiari
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ignacio Revuelta
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Maria Jose Ricart
- Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Red de Investigación Renal (REDinREN), Madrid, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Angeles Garcia-Criado
- Radiology Department, Center for Imaging Diagnosis, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Renal Transplant Unit, Nephrology and Kidney Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain,*Correspondence: Pedro Ventura-Aguiar,
| |
Collapse
|