1
|
Feng J, Zheng H, Zhang Y, Wu H, Wang M, Sun Y, Zhang M, Xiao H, Qiao C, Wang J, Luo L, Li X, Feng J, Shi Y, Zheng Y, Wang Y, Sheng D, Chen G. pHLIP-fused PD-L1 engages avelumab to elicit NK cytotoxicity under acidic conditions. Heliyon 2024; 10:e30551. [PMID: 38756565 PMCID: PMC11096742 DOI: 10.1016/j.heliyon.2024.e30551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Natural killer (NK) cells represent key player in immune surveillance to eliminate transformed or malignant cells. One of mechanisms of action of NK cells is antibody-dependent cell-mediated cytotoxicity (ADCC) by recognizing tumor antigens on the surface of cancer cells. However, the heterogeneity of tumor antigens and the scarcity of membrane surface targets significantly restrict this strategy. Recently, we constructed a new cargo by tethering a low pH insertion peptide (pHLIP) to the C terminus of the ectodomain of programed death ligand-1 (PD-L1) and demonstrated its ability to modulate immune responses. Herein, the potential application of PD-L1-pHLIP in cancer therapy was determined. pHLIP tethering had no effect on the binding capacity of PD-L1 protein to an anti-PD-L1 antibody (i.e. avelumab). Association of pHLIP rendered PD-L1 segment display on the surface of cellular membrane in the acidic buffer instead of the neutral solution. Importantly, plate-coated or beads-coupled PD-L1-pHLIP enable robust activation and expression of cytotoxic mediators of NK cells via engaging avelumab. Overall, this work provides proof of concept that recombinant PD-L1 protein decorated on the cellular membrane driven by pHLIP in combination with appropriate monoclonal antibody has potentials to elicit NK cytotoxicity, which may represent a novel and promising therapeutic avenue in cancer.
Collapse
Affiliation(s)
- Junjuan Feng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Mianjing Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Ying Sun
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010058, PR China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Dongsheng Sheng
- Department of Thoracic surgery, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| |
Collapse
|
2
|
Luah YH, Wu T, Cheow LF. Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate. Nat Biomed Eng 2024; 8:248-262. [PMID: 37652987 DOI: 10.1038/s41551-023-01089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Assays for assessing cell-mediated cytotoxicity are largely target-cell-centric and cannot identify and isolate subpopulations of cytotoxic effector cells. Here we describe an assay compatible with flow cytometry for the accurate identification and sorting of functional killer-cell subpopulations in co-cultures. The assay, which we named PAINTKiller (for 'proximity affinity intracellular transfer identification of killer cells'), relies on the detection of an intracellular fluorescent protein 'painted' by a lysed cell on the surface of the lysing cytotoxic cell (specifically, on cell lysis the intracellular fluorescein derivative carboxyfluorescein succinimidyl ester is captured on the surface of the natural killer cell by an antibody for anti-fluorescein isothiocyanate linked to an antibody for the pan-leucocyte surface receptor CD45). The assay can be integrated with single-cell RNA sequencing for the analysis of molecular pathways associated with cell cytotoxicity and may be used to uncover correlates of functional immune responses.
Collapse
Affiliation(s)
- Yen Hoon Luah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore
| | - Tongjin Wu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Critical Analytics for Manufacturing of Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Park J, Kim S, Jangid AK, Park HW, Kim K. Networked Cluster Formation via Trigonal Lipid Modules for Augmented Ex Vivo NK Cell Priming. Int J Mol Sci 2024; 25:1556. [PMID: 38338836 PMCID: PMC10855780 DOI: 10.3390/ijms25031556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Current cytokine-based natural killer (NK) cell priming techniques have exhibited limitations such as the deactivation of biological signaling molecules and subsequent insufficient maturation of the cell population during mass cultivation processes. In this study, we developed an amphiphilic trigonal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-polyethylene glycol (PEG) material to assemble NK cell clusters via multiple hydrophobic lipid insertions into cellular membranes. Our lipid conjugate-mediated ex vivo NK cell priming sufficiently augmented the structural modulation of clusters, facilitated diffusional signal exchanges, and finally activated NK cell population with the clusters. Without any inhibition in diffusional signal exchanges and intrinsic proliferative efficacy of NK cells, effectively prime NK cell clusters produced increased interferon-gamma, especially in the early culture periods. In conclusion, the present study demonstrates that our novel lipid conjugates could serve as a promising alternative for future NK cell mass production.
Collapse
Affiliation(s)
| | | | | | | | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 22012, Republic of Korea; (J.P.); (S.K.); (A.K.J.); (H.W.P.)
| |
Collapse
|
4
|
Olivas-Aguirre M, Cruz-Aguilar LH, Pottosin I, Dobrovinskaya O. Reduction of Ca 2+ Entry by a Specific Block of KCa3.1 Channels Optimizes Cytotoxic Activity of NK Cells against T-ALL Jurkat Cells. Cells 2023; 12:2065. [PMID: 37626875 PMCID: PMC10453324 DOI: 10.3390/cells12162065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Degranulation mediated killing mechanism by NK cells is dependent on store-operated Ca2+ entry (SOCE) and has optimum at moderate intracellular Ca2+ elevations so that partial block of SOCE optimizes the killing process. In this study, we tested the effect of the selective blocker of KCa3.1 channel NS6180 on SOCE and the killing efficiency of NK cells from healthy donors and NK-92 cells against T-ALL cell line Jurkat. Patch-clamp analysis showed that only one-quarter of resting NK cells functionally express KCa3.1 current, which increases 3-fold after activation by interleukins 15 and 2. Nevertheless, blockage of KCa3.1 significantly reduced SOCE and intracellular Ca2+ rise induced by IL-15 or target cell recognition. NS6180 (1 μM) decreased NK degranulation at zero time of coculture with Jurkat cells but already after 1 h, the degranulation reached the same level as in the control. Monitoring of target cell death by flow cytometry and confocal microscopy demonstrated that NS6180 significantly improved the killing ability of NK cells after 1 h in coculture with Jurkat cells and increased the Jurkat cell fraction with apoptotic and necrotic markers. Our data evidence a strong dependence of SOCE on KCa3.1 activity in NK cells and that KCa3.1 specific block can improve NK cytotoxicity.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUsur), University of Guadalajara, Guzmán City 49000, Mexico
| | - Laura Hadit Cruz-Aguilar
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28045, Mexico
| |
Collapse
|
5
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
6
|
Chang M, Tang X, Nelson L, Nyberg G, Du Z. Differential effects on natural killer cell production by membrane-bound cytokine stimulations. Biotechnol Bioeng 2022; 119:1820-1838. [PMID: 35297033 DOI: 10.1002/bit.28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Robust manufacturing production of natural killer (NK) cells has been challenging in allogeneic NK cell-based therapy. Here, we compared the impact of cytokines on NK cell expansion by developing recombinant K562 feeder cell lines expressing membrane-bound cytokines, mIL15, mIL21, and 41BBL, individually or in combination. We found that 41BBL played a dominant role in promoting up to 500,000-fold of NK cell expansion after a 21-day culture process without inducing exhaustion. However, 41BBL stimulation reduced the overall cytotoxic activity of NK cells when combined with mIL15 and mIL21. Additionally, long-term stimulation with mIL15 and mIL21, but not 41BBL, increased CD56 expression and CD56bright population, which is unexpectedly correlated with the NK cell cytotoxicity. By conducting single-cell sequencing, we identified distinct subpopulations of NK cells induced by different cytokines, including an adaptive-like CD56brightCD16-CD49a+ subset induced by mIL15. Through gene expression analysis, we found that cytokines modulated signaling pathways and target genes involved in cell cycle, senescence, self-renewal, migration, and maturation, in a different manner. Together, our study demonstrated cytokine signal pathways play different roles in NK cell expansion and differentiation, which shed light on NK cell process design to improve productivity and product quality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiping Chang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Xiaoyan Tang
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Luke Nelson
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Gregg Nyberg
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhimei Du
- Process Cell Sciences, Biologics Process R&D, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|