1
|
Schäfer A, Calderin Sollet Z, Hervé MP, Buhler S, Ferrari-Lacraz S, Norman PJ, Kichula KM, Farias TDJ, Masouridi-Levrat S, Mamez AC, Pradier A, Simonetta F, Chalandon Y, Villard J. NK- and T-cell repertoire is established early after allogeneic HSCT and is imprinted by CMV reactivation. Blood Adv 2024; 8:5612-5624. [PMID: 39047210 PMCID: PMC11550366 DOI: 10.1182/bloodadvances.2024013117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Besides genetic influences, nongenetic factors such as graft-versus-host disease and viral infections have been shown to be important shapers of the immune reconstitution and diversification processes after hematopoietic stem cell transplantation (HSCT). However, differential susceptibility to immune modulation by nongenetic factors is not fully understood. We determined to follow the reconstitution of the T-cell receptor (TCR) repertoire through immune sequencing of natural killer (NK) cells using a 35-marker spectral flow cytometry panel and in relation to clinical events. A longitudinal investigation was performed on samples derived from 54 HSCT recipients during the first year after HSCT. We confirmed a significant contraction in TCR repertoire diversity, with remarkable stability over time. Cytomegalovirus (CMV) reactivation had the ability to significantly change TCR repertoire clonality and composition, with a long-lasting imprint. Our data further revealed skewing of NK-cell reconstitution in CMV reactivated recipients, with an increased frequency of KIR2DL2L3S2+ adaptive, cytolytic, and functional CD107a+ NK cells, concomitant with a reduced pool of NKG2A+ NK cells. We provided support that CMV might act as an important driver of peripheral homeostatic proliferation of circulating specific T and NK cells, which can be viewed as a compensatory mechanism to establish a new peripheral repertoire.
Collapse
Affiliation(s)
- Antonia Schäfer
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Priscille Hervé
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| | - Paul J. Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Katherine M. Kichula
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC
| | - Ticiana D. J. Farias
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Stavroula Masouridi-Levrat
- Service of Haematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claire Mamez
- Service of Haematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amandine Pradier
- Service of Haematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federico Simonetta
- Service of Haematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Chalandon
- Service of Haematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva Center for Inflammation Research, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Blunt MD, Fisher H, Schittenhelm RB, Mbiribindi B, Fulton R, Khan S, Espana-Serrano L, Graham LV, Bastidas-Legarda L, Burns D, Khakoo SM, Mansour S, Essex JW, Ayala R, Das J, Purcell AW, Khakoo SI. The nuclear export protein XPO1 provides a peptide ligand for natural killer cells. SCIENCE ADVANCES 2024; 10:eado6566. [PMID: 39178254 PMCID: PMC11343027 DOI: 10.1126/sciadv.ado6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
XPO1 (Exportin-1/CRM1) is a nuclear export protein that is frequently overexpressed in cancer and functions as a driver of oncogenesis. Currently small molecules that target XPO1 are being used in the clinic as anticancer agents. We identify XPO1 as a target for natural killer (NK) cells. Using immunopeptidomics, we have identified a peptide derived from XPO1 that can be recognized by the activating NK cell receptor KIR2DS2 in the context of human leukocyte antigen-C. The peptide can be endogenously processed and presented to activate NK cells specifically through this receptor. Although high XPO1 expression in cancer is commonly associated with a poor prognosis, we show that the outcome of specific cancers, such as hepatocellular carcinoma, can be substantially improved if there is concomitant evidence of NK cell infiltration. We thus identify XPO1 as a bona fide tumor antigen recognized by NK cells that offers an opportunity for a personalized approach to NK cell therapy for solid tumors.
Collapse
Affiliation(s)
- Matthew D. Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hayden Fisher
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Berenice Mbiribindi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rebecca Fulton
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sajida Khan
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Laura Espana-Serrano
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lara V. Graham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Leidy Bastidas-Legarda
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, and The Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, Ohio State University, Columbus, OH, USA
| | - Daniel Burns
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sophie M.S. Khakoo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Salah Mansour
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan W. Essex
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Rochelle Ayala
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, and The Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, Ohio State University, Columbus, OH, USA
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Salim I. Khakoo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Cantoni C, Falco M, Vitale M, Pietra G, Munari E, Pende D, Mingari MC, Sivori S, Moretta L. Human NK cells and cancer. Oncoimmunology 2024; 13:2378520. [PMID: 39022338 PMCID: PMC11253890 DOI: 10.1080/2162402x.2024.2378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The long story of NK cells started about 50 y ago with the first demonstration of a natural cytotoxic activity within an undefined subset of circulating leukocytes, has involved an ever-growing number of researchers, fascinated by the apparently easy-to-reach aim of getting a "universal anti-tumor immune tool". In fact, in spite of the impressive progress obtained in the first decades, these cells proved far more complex than expected and, paradoxically, the accumulating findings have continuously moved forward the attainment of a complete control of their function for immunotherapy. The refined studies of these latter years have indicated that NK cells can epigenetically calibrate their functional potential, in response to specific environmental contexts, giving rise to extraordinarily variegated subpopulations, comprehensive of memory-like cells, tissue-resident cells, or cells in various differentiation stages, or distinct functional states. In addition, NK cells can adapt their activity in response to a complex body of signals, spanning from the interaction with either suppressive or stimulating cells (myeloid-derived suppressor cells or dendritic cells, respectively) to the engagement of various receptors (specific for immune checkpoints, cytokines, tumor/viral ligands, or mediating antibody-dependent cell-mediated cytotoxicity). According to this picture, the idea of an easy and generalized exploitation of NK cells is changing, and the way is opening toward new carefully designed, combined and personalized therapeutic strategies, also based on the use of genetically modified NK cells and stimuli capable of strengthening and redirecting their effector functions against cancer.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Vitale
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Daniela Pende
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
4
|
Wright PA, van de Pasch LAL, Dignan FL, Kichula KM, Pollock NR, Norman PJ, Marchan E, Hill L, Vandelbosch S, Fullwood C, Sheldon S, Hampson L, Tholouli E, Poulton KV. Donor KIR2DL1 Allelic Polymorphism Influences Posthematopoietic Progenitor Cell Transplantation Outcomes in the T Cell Depleted and Reduced Intensity Conditioning Setting. Transplant Cell Ther 2024; 30:488.e1-488.e15. [PMID: 38369017 PMCID: PMC11056303 DOI: 10.1016/j.jtct.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The majority of established KIR clinical assessment algorithms used for donor selection for hematopoietic progenitor cell transplantation (HPCT) evaluate gene content (presence/absence) of the KIR gene complex. In comparison, relatively little is known about the impact of KIR allelic polymorphism. By analyzing donors of T cell depleted (TcD) reduced intensity conditioning (RIC) HPCT, this study investigated the influence on post-transplant outcome of 2 polymorphic residues of the inhibitory KIR2DL1. The aim of this study was to expand upon existing research into the influence of KIR2DL1 allelic polymorphism upon post-transplant outcome. The effects of allele groups upon transplant outcomes were investigated within a patient cohort using a defined treatment protocol of RIC with TcD. Using phylogenetic data, KIR2DL1 allelic polymorphism was categorized into groups on the basis of variation within codons 114 and 245 (positive or negative for the following groups: KIR2DL1*002/001g, KIR2DL1*003, KIR2DL1*004g) and the identification of null alleles. The influence of these KIR2DL1 allele groups in hematopoietic progenitor cell transplantation (HPCT) donors was assessed in the post-transplant data of 86 acute myelogenous leukemia patients receiving RIC TcD HPCT at a single center. KIR2DL1 allele groups in the donor significantly impacted upon 5-year post-transplant outcomes in RIC TcD HPCT. Donor KIR2DL1*003 presented the greatest influence upon post-transplant outcomes, with KIR2DL1*003 positive donors severely reducing 5-year post-transplant overall survival (OS) compared to those receiving a transplant from a KIR2DL1*003 negative donor (KIR2DL1*003 pos versus neg: 27.0% versus 60.0%, P = .008, pc = 0.024) and disease-free survival (DFS) (KIR2DL1*003 pos versus neg: 23.5% versus 60.0%, P = .004, pc = 0.012), and increasing 5-year relapse incidence (KIR2DL1*003 pos versus neg: 63.9% versus 27.2%, P = .009, pc = 0.027). KIR2DL1*003 homozygous and KIR2DL1*003 heterozygous grafts did not present significantly different post-transplant outcomes. Donors possessing the KIR2DL1*002/001 allele group were found to significantly improve post-transplant outcomes, with donors positive for the KIR2DL1*004 allele group presenting a trend towards improvement. KIR2DL1*002/001 allele group (KIR2DL1*002/001g) positive donors improved 5-year OS (KIR2DL1*002/001g pos versus neg: 56.4% versus 27.2%, P = .009, pc = 0.024) and DFS (KIR2DL1*002/001g pos versus neg: 53.8% versus 25.5%, P = .018, pc = 0.036). KIR2DL1*004 allele group (KIR2DL1*004g) positive donors trended towards improving 5-year OS (KIR2DL1*004g pos versus neg: 53.3% versus 35.5%, P = .097, pc = 0.097) and DFS (KIR2DL1*004g pos versus neg: 50.0% versus 33.9%, P = .121, pc = 0.121), and reducing relapse incidence (KIR2DL1*004g pos versus neg: 33.1% versus 54.0%, P = .079, pc = 0.152). The presented findings suggest donor selection algorithms for TcD RIC HPCT should consider avoiding KIR2DL1*003 positive donors, where possible, and contributes to the mounting evidence that KIR assessment in donor selection algorithms should reflect the conditioning regime protocol used.
Collapse
Affiliation(s)
- Paul A Wright
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Histocompatibility & Immunogenetics Laboratory, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK.
| | | | - Fiona L Dignan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Katherine M Kichula
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Nicholas R Pollock
- Department of Biomedical Informatics, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Paul J Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Denver, Colorado
| | - Earl Marchan
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lesley Hill
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | | | - Catherine Fullwood
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, Greater Manchester, UK
| | - Stephen Sheldon
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Lynne Hampson
- Division of Cancer Sciences, University of Manchester, Manchester, Greater Manchester, UK
| | - Eleni Tholouli
- Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Kay V Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK; Faculty of Biology, Medicine & Health, University of Manchester, Manchester, Greater Manchester, UK
| |
Collapse
|
5
|
Schetelig J, Baldauf H, Heidenreich F, Hoogenboom JD, Spellman SR, Kulagin A, Schroeder T, Sengeloev H, Dreger P, Forcade E, Vydra J, Wagner-Drouet EM, Choi G, Paneesha S, Miranda NAA, Tanase A, de Wreede LC, Lange V, Schmidt AH, Sauter J, Fein JA, Bolon YT, He M, Marsh SGE, Gadalla SM, Paczesny S, Ruggeri A, Chabannon C, Fleischhauer K. Donor KIR genotype based outcome prediction after allogeneic stem cell transplantation: no land in sight. Front Immunol 2024; 15:1350470. [PMID: 38629074 PMCID: PMC11019434 DOI: 10.3389/fimmu.2024.1350470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Optimizing natural killer (NK) cell alloreactivity could further improve outcome after allogeneic hematopoietic cell transplantation (alloHCT). The donor's Killer-cell Immunoglobulin-like Receptor (KIR) genotype may provide important information in this regard. In the past decade, different models have been proposed aiming at maximizing NK cell activation by activating KIR-ligand interactions or minimizing inhibitory KIR-ligand interactions. Alternative classifications intended predicting outcome after alloHCT by donor KIR-haplotypes. In the present study, we aimed at validating proposed models and exploring more classification approaches. To this end, we analyzed samples stored at the Collaborative Biobank from HLA-compatible unrelated stem cell donors who had donated for patients with acute myeloid leukemia (AML) or myelodysplastic neoplasm (MDS) and whose outcome data had been reported to EBMT or CIBMTR. The donor KIR genotype was determined by high resolution amplicon-based next generation sequencing. We analyzed data from 5,017 transplants. The median patient age at alloHCT was 56 years. Patients were transplanted for AML between 2013 and 2018. Donor-recipient pairs were matched for HLA-A, -B, -C, -DRB1, and -DQB1 (79%) or had single HLA mismatches. Myeloablative conditioning was given to 56% of patients. Fifty-two percent of patients received anti-thymocyte-globulin-based graft-versus-host disease prophylaxis, 32% calcineurin-inhibitor-based prophylaxis, and 7% post-transplant cyclophosphamide-based prophylaxis. We tested several previously reported classifications in multivariable regression analyses but could not confirm outcome associations. Exploratory analyses in 1,939 patients (39%) who were transplanted from donors with homozygous centromeric (cen) or telomeric (tel) A or B motifs, showed that the donor cen B/B-tel A/A diplotype was associated with a trend to better event-free survival (HR 0.84, p=.08) and reduced risk of non-relapse mortality (NRM) (HR 0.65, p=.01). When we further dissected the contribution of B subtypes, we found that only the cen B01/B01-telA/A diplotype was associated with a reduced risk of relapse (HR 0.40, p=.04) while all subtype combinations contributed to a reduced risk of NRM. This exploratory finding has to be validated in an independent data set. In summary, the existing body of evidence is not (yet) consistent enough to recommend use of donor KIR genotype information for donor selection in routine clinical practice.
Collapse
Affiliation(s)
- Johannes Schetelig
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | | | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | | | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Thomas Schroeder
- Klinik für Hämatologie und Stammzelltransplantation, Universitätsklinikum Essen, Essen, Germany
| | - Henrik Sengeloev
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Edouard Forcade
- Service Hématologie clinique de Thérapie cellulaire, Centre Hospitalier Universitaire Bordeaux, Université de Bordeaus, Bordeaux, France
| | - Jan Vydra
- Transplant Unit and Intensive Care Unit, Institute of Hematology and Bood Transfusion, Prague, Czechia
| | - Eva Maria Wagner-Drouet
- Center for Cellular Immunotherapy and Stem Cell Transplantation, Third Medical Department, Hematology and Oncology, University Cancer Center Mainz, Mainz, Germany
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shankara Paneesha
- Department of Haematology & Stem Cell Transplantation, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Nuno A. A. Miranda
- Department of Hematology, Instituto Português de Oncologia de Lisboa, Lisboa, Portugal
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | | | | | - Joshua A. Fein
- Department of Hematology & Medical Oncology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Steven G. E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London & Cancer Institute, University College London, London, United Kingdom
| | - Shahinaz M. Gadalla
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Bethesda, MD, United States
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | | | - Christian Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer, Marseille, France
| | | |
Collapse
|
6
|
Fein JA, Shouval R, Krieger E, Spellman SR, Wang T, Baldauf H, Fleischhauer K, Kröger N, Horowitz M, Maiers M, Miller JS, Mohty M, Nagler A, Weisdorf D, Malmberg KJ, Toor AA, Schetelig J, Romee R, Koreth J. Systematic evaluation of donor-KIR/recipient-HLA interactions in HLA-matched hematopoietic cell transplantation for AML. Blood Adv 2024; 8:581-590. [PMID: 38052043 PMCID: PMC10837477 DOI: 10.1182/bloodadvances.2023011622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), donor natural killer cell killer immunoglobulin-like receptors (KIR) and recipient HLA interactions may contribute to the graft-versus-leukemia effect of allogeneic hematopoietic cell transplantation (HCT). Analyses of individual KIR/HLA interactions, however, have yielded conflicting findings, and their importance in the HLA-matched unrelated donor (MUD) setting remains controversial. We systematically studied outcomes of individual donor-KIR/recipient-HLA interactions for HCT outcomes and empirically evaluated prevalent KIR genotypes for clinical benefit. Adult patients with AML (n = 2025) who received HCT with MUD grafts in complete remission reported to the Center for International Blood and Marrow Transplantation were evaluated. Only the donor-2DL2+/recipient-HLA-C1+ pair was associated with reduced relapse (hazard ratio [HR], 0.79; 95% confidence interval [CI], 0.67-0.93; P = .006) compared with donor-2DL2-/recipient-HLA-C1+ pair. However, no association was found when comparing HLA-C groups among KIR-2DL2+-graft recipients. We identified 9 prevalent donor KIR genotypes in our cohort and screened them for association with relapse risk. Genotype 5 (G5) in all recipients and G3 in Bw4+ recipients were associated with decreased relapse risk (HR, 0.52; 95% CI, 0.35-0.78; P = .002; and HR, 0.32; 95% CI, 0.14-0.72; P = .006; respectively) and G2 (HR 1.63, 95% CI, 1.15-2.29; P = .005) with increased relapse risk in C1-homozygous recipients, compared with other patients with the same ligand. However, we could not validate these findings in an external data set of 796 AML transplants from the German transplantation registry. Neither a systematic evaluation of known HLA-KIR interactions nor an empiric assessment of prevalent KIR genotypes demonstrated clinically actionable associations; therefore, these data do not support these KIR-driven strategies for MUD selection in AML.
Collapse
Affiliation(s)
- Joshua A. Fein
- Depatment of Hematology and Medical Oncology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Roni Shouval
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Krieger
- Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Henning Baldauf
- Clinical Trials Unit, DKMS Bone Marrow Registry, Tübingen, Germany
| | | | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mary Horowitz
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Martin Maiers
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | - Mohamad Mohty
- Department of Hematology, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - Arnon Nagler
- Division of Hematoloy, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Daniel Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Amir A. Toor
- Topper Cancer Institute, Lehigh Valley Health Network, Allentown, PA
| | - Johannes Schetelig
- Clinical Trials Unit, DKMS Bone Marrow Registry, Tübingen, Germany
- Medizinische Klinik I, University Hospital TU Dresden, Dresden, Germany
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - John Koreth
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| |
Collapse
|
7
|
van der Burg LLJ, de Wreede LC, Baldauf H, Sauter J, Schetelig J, Putter H, Böhringer S. Haplotype reconstruction for genetically complex regions with ambiguous genotype calls: Illustration by the KIR gene region. Genet Epidemiol 2024; 48:3-26. [PMID: 37830494 DOI: 10.1002/gepi.22538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Advances in DNA sequencing technologies have enabled genotyping of complex genetic regions exhibiting copy number variation and high allelic diversity, yet it is impossible to derive exact genotypes in all cases, often resulting in ambiguous genotype calls, that is, partially missing data. An example of such a gene region is the killer-cell immunoglobulin-like receptor (KIR) genes. These genes are of special interest in the context of allogeneic hematopoietic stem cell transplantation. For such complex gene regions, current haplotype reconstruction methods are not feasible as they cannot cope with the complexity of the data. We present an expectation-maximization (EM)-algorithm to estimate haplotype frequencies (HTFs) which deals with the missing data components, and takes into account linkage disequilibrium (LD) between genes. To cope with the exponential increase in the number of haplotypes as genes are added, we add three components to a standard EM-algorithm implementation. First, reconstruction is performed iteratively, adding one gene at a time. Second, after each step, haplotypes with frequencies below a threshold are collapsed in a rare haplotype group. Third, the HTF of the rare haplotype group is profiled in subsequent iterations to improve estimates. A simulation study evaluates the effect of combining information of multiple genes on the estimates of these frequencies. We show that estimated HTFs are approximately unbiased. Our simulation study shows that the EM-algorithm is able to combine information from multiple genes when LD is high, whereas increased ambiguity levels increase bias. Linear regression models based on this EM, show that a large number of haplotypes can be problematic for unbiased effect size estimation and that models need to be sparse. In a real data analysis of KIR genotypes, we compare HTFs to those obtained in an independent study. Our new EM-algorithm-based method is the first to account for the full genetic architecture of complex gene regions, such as the KIR gene region. This algorithm can handle the numerous observed ambiguities, and allows for the collapsing of haplotypes to perform implicit dimension reduction. Combining information from multiple genes improves haplotype reconstruction.
Collapse
Affiliation(s)
| | - Liesbeth C de Wreede
- Biomedical Data Sciences, LUMC, Leiden, The Netherlands
- DKMS, Dresden/Tübingen, Germany
| | | | | | - Johannes Schetelig
- DKMS, Dresden/Tübingen, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hein Putter
- Biomedical Data Sciences, LUMC, Leiden, The Netherlands
| | | |
Collapse
|
8
|
Blunt MD, Vallejo Pulido A, Fisher JG, Graham LV, Doyle ADP, Fulton R, Carter MJ, Polak M, Johnson PWM, Cragg MS, Forconi F, Khakoo SI. KIR2DS2 Expression Identifies NK Cells With Enhanced Anticancer Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:379-390. [PMID: 35768150 PMCID: PMC7613074 DOI: 10.4049/jimmunol.2101139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.
Collapse
Affiliation(s)
- Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Andres Vallejo Pulido
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Rebecca Fulton
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Matthew J Carter
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Marta Polak
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Peter W M Johnson
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| |
Collapse
|
9
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
10
|
Downing J, D'Orsogna L. High-resolution human KIR genotyping. Immunogenetics 2022; 74:369-379. [PMID: 35050404 PMCID: PMC9262774 DOI: 10.1007/s00251-021-01247-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Killer immunoglobulin-like receptors (KIR) regulate the function of natural killer cells through interactions with various ligands on the surface of cells, thereby determining whether natural killer (NK) cells are to be activated or inhibited from killing the cell being interrogated. The genes encoding these proteins display extensive variation through variable gene content, copy number and allele polymorphism. The combination of KIR genes and their ligands is implicated in various clinical settings including haematopoietic stem cell and solid organ transplant and infectious disease progression. The determination of KIR genes has been used as a factor in the selection of optimal stem cell donors with haplotype variations in recipient and donor giving differential clinical outcomes. Methods to determine KIR genes have primarily involved ascertaining the presence or absence of genes in an individual. With the more recent introduction of massively parallel clonal next-generation sequencing and single molecule very long read length third-generation sequencing, high-resolution determination of KIR alleles has become feasible. Determining the extent and functional impact of allele variation has the potential to lead to further optimisation of clinical outcomes as well as a deeper understanding of the functional properties of the receptors and their interactions with ligands. This review summarizes recently published high-resolution KIR genotyping methods and considers the various advantages and disadvantages of the approaches taken. In addition the application of allele level genotyping in the setting of transplantation and infectious disease control is discussed.
Collapse
Affiliation(s)
- Jonathan Downing
- Department of Clinical Immunology, PathWest, Perth, WA, Australia. .,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, PathWest, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Marin WM, Dandekar R, Augusto DG, Yusufali T, Heyn B, Hofmann J, Lange V, Sauter J, Norman PJ, Hollenbach JA. High-throughput Interpretation of Killer-cell Immunoglobulin-like Receptor Short-read Sequencing Data with PING. PLoS Comput Biol 2021; 17:e1008904. [PMID: 34339413 PMCID: PMC8360517 DOI: 10.1371/journal.pcbi.1008904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/12/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that modulate the activity of natural killer cells, and variation in these genes has been linked to infectious and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical relevance and high variability of KIR genes makes short-read sequencing an attractive technology for interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, structural variation including gene fusions and deletions, and a high level of homology between genes, its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies limited to examining presence or absence of specific genes. Here, we present the PING (Pushing Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment strategies and a custom alignment processing workflow to enable high-throughput KIR sequence analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR genes through use of a comprehensive alignment reference. The gene copy number determined per individual enables an innovative genotype determination workflow using genotype-matched references. Together, these methods address the challenges imposed by the structural complexity and overall homology of the KIR complex. To determine copy number and genotype determination accuracy, we applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated exceptional copy number determination performance across all datasets and robust genotype determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset provides insight into misaligned reads, advancing our understanding in interpretation of short-read sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, high-throughput KIR genotyping for disease and population studies.
Collapse
Affiliation(s)
- Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ravi Dandekar
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Danillo G. Augusto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Tasneem Yusufali
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | | | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
12
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|