1
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Ivanov DG, Ivetic N, Du Y, Nguyen SN, Le SH, Favre D, Nazy I, Kaltashov IA. Reverse Engineering of a Pathogenic Antibody Reveals the Molecular Mechanism of Vaccine-Induced Immune Thrombotic Thrombocytopenia. J Am Chem Soc 2023; 145:25203-25213. [PMID: 37949820 DOI: 10.1021/jacs.3c07846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The massive COVID-19 vaccine roll-out campaign illuminated a range of rare side effects, the most dangerous of which─vaccine-induced immune thrombotic thrombocytopenia (VITT)─is caused by adenoviral (Ad)-vectored vaccines. VITT occurrence had been linked to the production of pathogenic antibodies that recognize an endogenous chemokine, platelet factor 4 (PF4). Mass spectrometry (MS)-based evaluation of the ensemble of anti-PF4 antibodies obtained from a VITT patient's blood indicates that the major component is a monoclonal antibody. Structural characterization of this antibody reveals several unusual characteristics, such as the presence of an N-glycan in the Fab segment and high density of acidic amino acid residues in the complementarity-determining regions. A recombinant version of this antibody (RVT1) was generated by transient expression in mammalian cells based on the newly determined sequence. It captures the key properties of VITT antibodies such as their ability to activate platelets in a PF4 concentration-dependent fashion. Homology modeling of the Fab segment reveals a well-defined polyanionic paratope, and the docking studies indicate that the polycationic segment of PF4 readily accommodates two Fab segments, cross-linking the antibodies to yield polymerized immune complexes. Their existence was verified with native MS by detecting assemblies as large as (RVT1)3(PF4)2, pointing out at FcγRIIa-mediated platelet activation as the molecular mechanism underlying VITT clinical manifestations. In addition to the high PF4 affinity, RVT1 readily binds other polycationic targets, indicating a polyreactive nature of this antibody. This surprising promiscuity not only sheds light on VITT etiology but also opens up a range of opportunities to manage this pathology.
Collapse
Affiliation(s)
- Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Nikola Ivetic
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yi Du
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Son N Nguyen
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - S Hung Le
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Daniel Favre
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Hajdukovic L, Palibrk A, Peric S, Basta I, Minic R, Jankovic M, Lavrnic D. Galactosylation of serum immunoglobulin G in myasthenia gravis with different autoantibodies. Scand J Clin Lab Invest 2023; 83:348-355. [PMID: 37428449 DOI: 10.1080/00365513.2023.2230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Myasthenia gravis (MG) is a disease with impaired transmission at the neuromuscular junction, characterised by weakness and fatigability of skeletal muscles. In acquired autoimmune MG, antibodies against acetylcholine receptor (AChRAb) or muscle-specific tyrosine kinase (MuSKAb) are present. There is not much data about immunoglobulin G (IgG) galactosylation in MG, and none based on interactions with lectins. This study aims to examine IgG galactosylation in two types of myasthenia, using affinity immunoelectrophoresis with lectin concanavalin A (Con A). Affinity of Con A-IgG interaction, expressed as retardation coefficient (R), indicated the presence of degalactosylated IgG. The average R values were significantly different between three examined groups, being the lowest in controls (healthy subjects), higher in acetylcholine receptor (AChR) MG, and the highest in muscle-specific tyrosine kinase (MuSK) MG (ANOVA, p < .05). This indicated decreased galactosylation of IgG in both types of MG compared to controls, more pronounced in MuSK MG. IgG galactosylation was also investigated in relation to the disease severity score, determined according to the Myasthenia Gravis Foundation of America (MGFA) criteria, at the time of diagnosis, nadir of the disease and last check-out visit. The average R values for mild disease (stages I-IIIa) were significantly lower than for severe disease (stages IIIb-V), both at the time of diagnosis (p < .05), and at the nadir of the disease (p < .05). Thus, IgG galactosylation was associated with the presence of specific autoantibodies in MG, as well as with disease severity for both types of MG, and may be a predictive marker of MG outcome.
Collapse
Affiliation(s)
- Ljiljana Hajdukovic
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Aleksa Palibrk
- Faculty of Medicine, Neurology Clinic, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Stojan Peric
- Faculty of Medicine, Neurology Clinic, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivana Basta
- Faculty of Medicine, Neurology Clinic, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Rajna Minic
- Institute for Medical Research, Group for Immunology, University of Belgrade, National Institute of Republic of Serbia, Belgrade, Serbia
| | - Miroslava Jankovic
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Belgrade, Serbia
| | - Dragana Lavrnic
- Faculty of Medicine, Neurology Clinic, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
5
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
7
|
Huang A, Kurhade SE, Ross P, Apley KD, Griffin JD, Berkland CJ, Farrell MP. Disrupting N-Glycosylation Using Type I Mannosidase Inhibitors Alters B-Cell Receptor Signaling. ACS Pharmacol Transl Sci 2022; 5:1062-1069. [PMID: 36407961 PMCID: PMC9667535 DOI: 10.1021/acsptsci.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Kifunensine is a known inhibitor of type I α-mannosidase enzymes and has been shown to have therapeutic potential for a variety of diseases and application in the expression of high-mannose N-glycan bearing glycoproteins; however, the compound's hydrophilic nature limits its efficacy. We previously synthesized two hydrophobic acylated derivatives of kifunensine, namely, JDW-II-004 and JDW-II-010, and found that these compounds were over 75-fold more potent than kifunensine. Here we explored the effects of these compounds on different mice and human B cells, and we demonstrate that they affected the cells in a similar fashion to kifunensine, further demonstrating their functional equivalence to kifunensine in assays utilizing primary cells. Specifically, a dose-dependent increase in the formation of high-mannose N-glycans decorated glycoproteins were observed upon treatment with kifunensine, JDW-II-004, and JDW-II-010, but greater potency was observed with the acylated derivatives. Treatment with kifunensine or the acylated derivatives also resulted in impaired B-cell receptor (BCR) signaling of the primary mouse B cells; however, primary human B cells treated with kifunensine or JDW-II-004 did not affect BCR signaling, while a modest increase in BCR signaling was observed upon treatment with JDW-010. Nevertheless, these findings demonstrate that the hydrophobic acylated derivatives of kifunensine can help overcome the mass-transfer limitations of the parent compound, and they may have applications for the treatment of ERAD-related diseases or prove to be more cost-effective alternatives for the generation and production of high-mannose N-glycan bearing glycoproteins.
Collapse
Affiliation(s)
- Aric Huang
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | - Suresh E. Kurhade
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Patrick Ross
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| | - Kyle D. Apley
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
| | | | - Cory J. Berkland
- Department
of Pharmaceutical Chemistry, The University
of Kansas, Lawrence, Kansas 66047, United States
- Bioengineering
Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Chemical and Petroleum Engineering, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Mark P. Farrell
- Department
of Medicinal Chemistry, The University of
Kansas, Lawrence, Kansas 66047, United
States
| |
Collapse
|
8
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
10
|
Luo M, Mao Y, Zeng W, Zheng S, Li H, Hu J, Xie X, Zhang Y. Site-specific N-glycosylation characterization of micro monoclonal immunoglobulins based on EThcD-sceHCD-MS/MS. Front Immunol 2022; 13:1013990. [PMID: 36189210 PMCID: PMC9520751 DOI: 10.3389/fimmu.2022.1013990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Monoclonal immunoglobulin produced by clonal plasma cells is the main cause in multiple myeloma and monoclonal gammopathy of renal significance. Because of the complicated purification method and the low stoichiometry of purified protein and glycans, site-specific N-glycosylation characterization for monoclonal immunoglobulin is still challenging. To profile the site-specific N-glycosylation of monoclonal immunoglobulins is of great interest. Therefore, in this study, we presented an integrated workflow for micro monoclonal IgA and IgG purification from patients with multiple myeloma in the HYDRASYS system, in-agarose-gel digestion, LC-MS/MS analysis without intact N-glycopeptide enrichment, and compared the identification performance of different mass spectrometry dissociation methods (EThcD-sceHCD, sceHCD, EThcD and sceHCD-pd-ETD). The results showed that EThcD-sceHCD was a better choice for site-specific N-glycosylation characterization of micro in-agarose-gel immunoglobulins (~2 μg) because it can cover more unique intact N-glycopeptides (37 and 50 intact N-glycopeptides from IgA1 and IgG2, respectively) and provide more high-quality spectra than sceHCD, EThcD and sceHCD-pd-ETD. We demonstrated the benefits of the alternative strategy in site-specific N-glycosylation characterizing micro monoclonal immunoglobulins obtained from bands separated by electrophoresis. This work could promote the development of clinical N-glycoproteomics and related immunology.
Collapse
Affiliation(s)
- Mengqi Luo
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Zeng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Zheng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Juanjuan Hu
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yong Zhang, ; Xinfang Xie,
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Zhang, ; Xinfang Xie,
| |
Collapse
|
11
|
Yang S, Cui M, Liu Q, Liao Q. Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications. Cancer Lett 2022; 549:215902. [PMID: 36096412 DOI: 10.1016/j.canlet.2022.215902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Immunoglobulin G (IgG) is the predominant component in humoral immunity and the major effector of neutralizing heterogeneous antigens. Glycosylation, as excessive posttranscriptional modification, can modulate IgG immune function. Glycosylated IgG has been reported to correlate with tumor progression, presenting several characteristic modifications, including the core fucose, galactose, sialic acid, and the bisect N-acetylglucosamine (GlcNAc). Meanwhile, IgG glycosylation regulates tumor immunity involved in tumor progression and is thus a potential target. Herein, we summarized the research progression to provide novel insight into the application of IgG glycosylation in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|