1
|
Hornaday KK, Stephenson NL, Canning MT, Tough SC, Slater DM. Maternal cytokine profiles in second and early third trimester are not predictive of preterm birth. PLoS One 2024; 19:e0311721. [PMID: 39700264 DOI: 10.1371/journal.pone.0311721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 12/21/2024] Open
Abstract
Previous studies have investigated whether inflammatory cytokines in maternal circulation are associated with preterm birth. However, many have reported inconsistent results, and few have investigated cytokine trends through gestation, particularly with respect to subtypes of preterm birth. We explored levels of 15 inflammatory cytokines and growth factors in plasma and serum collected in the second (17-23 weeks, timepoint 1 (T1)) and third (28-32 weeks, timepoint 2 (T2)) trimesters with respect to subtypes of preterm birth: spontaneous preterm labour (sPTL), preterm premature rupture of membranes (PPROM), and medically indicated preterm birth (mPTB). The change in TNFα levels over time (T2/T1) significantly classified mPTB from term birth with an AUC of 0.79. While elevated sICAM-1 levels were significantly associated with sPTL, sICAM-1 was not an effective biomarker for prediction. While statistical differences in some biomarkers, such as TNFα and sICAM-1 were found, these are likely not clinically meaningful for prediction. These results did not reveal a relationship between spontaneous labour and circulating maternal inflammatory biomarkers, however, do suggest distinct inflammatory profiles between subtypes of preterm birth.
Collapse
Affiliation(s)
- Kylie K Hornaday
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Nikki L Stephenson
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mary T Canning
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Suzanne C Tough
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Donna M Slater
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
2
|
Chen K, Yu Q, Sha Q, Wang J, Fang J, Li X, Shen X, Fu B, Guo C. Single-cell transcriptomic analysis of immune cell dynamics in the healthy human endometrium. Biochem Biophys Rep 2024; 39:101802. [PMID: 39161579 PMCID: PMC11332207 DOI: 10.1016/j.bbrep.2024.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
The microenvironment of the endometrial immune system is crucial to the success of placental implantation and healthy pregnancy. However, the functionalities of immune cells across various stages of the reproductive cycle have yet to be fully comprehended. To address this, we conducted advanced bioinformatic analysis on 230,049 high-quality single-cell transcriptomes from healthy endometrial samples obtained during the proliferative, secretory, early pregnancy, and late pregnancy stages. Our investigation has unveiled that proliferative natural killer (NK) cells, a potential source of endometrial NK cells, exhibit the most robust proliferative and differentiation potential during non-pregnant stages. We have also identified similar differentiation trajectories of NK cells originating from proliferative NK cells across four stages. Notably, during early pregnancy, NK cells demonstrate the highest oxidative phosphorylation metabolism activity, and, in conjunction with macrophages and T cells, exhibit the strongest type II interferon response. With spatial transcriptome data, we have discerned that the most robust immune-non-immune interactions are associated with the promotion and inhibition of cell proliferation, differentiation and migration during four stages. Furthermore, we have compiled lists of stage-specific risk genes implicated in reproductive diseases, which hold promise as potential disease biomarkers. Our study provides insights into the dynamics of the endometrial immune microenvironment during different reproductive cycle stages, thus serving as a reference for detecting pathological changes during pregnancy.
Collapse
Affiliation(s)
- Kaixing Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Qiaoni Yu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Qing Sha
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Junyu Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
| | - Jingwen Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- HanGene Biotech, Xiaoshan Innovation Polis, Hangzhou, Zhejiang, 311200, China
| | - Xin Li
- Department of Rheumatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaokun Shen
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Binqing Fu
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China
- CAS Center for Excellence in Molecular Cell Sciences, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| |
Collapse
|
3
|
DeTomaso A, Kim H, Shauh J, Adulla A, Zigo S, Ghoul M, Presicce P, Kallapur SG, Goodman W, Tilburgs T, Way SS, Hackney D, Moore J, Mesiano S. Progesterone inactivation in decidual stromal cells: A mechanism for inflammation-induced parturition. Proc Natl Acad Sci U S A 2024; 121:e2400601121. [PMID: 38861608 PMCID: PMC11194587 DOI: 10.1073/pnas.2400601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.
Collapse
Affiliation(s)
- Angela DeTomaso
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Hyeyon Kim
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Jacqueline Shauh
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Anika Adulla
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Sarah Zigo
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Maya Ghoul
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Pietro Presicce
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Suhas G. Kallapur
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Wendy Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Tamara Tilburgs
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Sing-Sing Way
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - David Hackney
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| | - John Moore
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH44106
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| |
Collapse
|
4
|
Gallo DM, Romero R, Bosco M, Chaiworapongsa T, Gomez-Lopez N, Arenas-Hernandez M, Jung E, Suksai M, Gotsch F, Erez O, Tarca AL. Maternal plasma cytokines and the subsequent risk of uterine atony and postpartum hemorrhage. J Perinat Med 2023; 51:219-232. [PMID: 35724639 PMCID: PMC9768104 DOI: 10.1515/jpm-2022-0211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To determine whether the maternal plasma concentrations of cytokines are higher in pregnant women with postpartum hemorrhage (PPH) compared to pregnant women without PPH. METHODS A retrospective case-control study included 36 women with PPH and 72 matched controls. Cases and controls were matched for gestational age at delivery, labor status, delivery route, parity, and year of sample collection. Maternal plasma samples were collected up to 3 days prior to delivery. Comparison of the plasma concentrations of 29 cytokines was performed by using linear mixed-effects models and included adjustment for covariates and multiple testing. A false discovery rate adjusted p-value <0.1 was used to infer significance. Random forest models with evaluation by leave-one-out and 9-fold cross-validation were used to assess the combined value of the proteins in predicting PPH. RESULTS Concentrations of interleukin (IL)-16, IL-6, IL-12/IL-23p40, monocyte chemotactic protein 1 (MCP-1), and IL-1β were significantly higher in PPH than in the control group. This difference remained significant after adjustment for maternal age, clinical chorioamnionitis, and preeclampsia. Multi-protein random forest proteomics models had moderate cross-validated accuracy for prediction of PPH [area under the ROC curve, 0.69 (0.58-0.81) by leave-one-out cross validation and 0.73 (0.65-0.81) by 9-fold cross-validation], and the inclusion of clinical and demographic information did not increase the prediction performance. CONCLUSIONS Pregnant women with severe PPH had higher median maternal plasma concentrations of IL-16, IL-6, IL-12/IL-23p40, MCP-1, and IL-1β than patients without PPH. These cytokines could serve as biomarkers or their pathways may be therapeutic targets.
Collapse
Affiliation(s)
- Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| |
Collapse
|
5
|
Menzies FM. Immunology of Pregnancy and Systemic Consequences. Curr Top Microbiol Immunol 2023; 441:253-280. [PMID: 37695432 DOI: 10.1007/978-3-031-35139-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present. This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.
Collapse
Affiliation(s)
- Fiona M Menzies
- School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, UK.
| |
Collapse
|
6
|
Shan Y, Shen S, Long J, Tang Z, Wu C, Ni X. Term and Preterm Birth Initiation Is Associated with the Macrophages Shifting to M1 Polarization in Gestational Tissues in Mice. BIOLOGY 2022; 11:biology11121759. [PMID: 36552269 PMCID: PMC9775566 DOI: 10.3390/biology11121759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Inflammation in gestational tissues plays critical role in parturition initiation. We sought to investigate the leukocyte infiltration and cytokine profile in uterine tissues to understand the inflammation during term and preterm labor in the mouse model. Preterm birth was induced by the administration of lipopolysaccharide (LPS) or RU38486. The populations of leukocytes were determined by flow cytometry. Macrophages were the largest population in the myometrium and decidua in late gestation. The macrophage population was significantly changed in the myometrium and decidua from late pregnancy to term labor and significantly changed at LPS- and RU386-induced preterm labor. Neutrophils, T cells, and NKT cells were increased in LPS- and RU38486-induced preterm labor. The above changes were accompanied by the increased expression of cytokines and chemokines. In late gestation, M2 macrophages were the predominant phenotype in gestational tissues. M1 macrophages significantly increased in these tissues at term and preterm labor. IL-6 and NLRP3 expression was significantly increased in macrophages at labor, supporting that macrophages exhibit proinflammatory phenotypes. NLRP3 inflammasome inhibitor MCC950 mainly suppressed macrophage infiltration in the myometrium at term labor and preterm labor. Our data suggest that the M1 polarization of macrophages contributes to inflammation linked to term and preterm labor initiation in gestational tissues.
Collapse
Affiliation(s)
- Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Zhengshan Tang
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Cichun Wu
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
7
|
Nicotine ameliorates inflammatory mediators in RU486 induced preterm labor model through activating cholinergic anti-inflammatory pathway. Cytokine 2022; 160:156054. [DOI: 10.1016/j.cyto.2022.156054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
|
8
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
9
|
Boros-Rausch A, Shynlova O, Lye SJ. A Broad-Spectrum Chemokine Inhibitor Blocks Inflammation-Induced Myometrial Myocyte-Macrophage Crosstalk and Myometrial Contraction. Cells 2021; 11:cells11010128. [PMID: 35011690 PMCID: PMC8750067 DOI: 10.3390/cells11010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Prophylactic administration of the broad-spectrum chemokine inhibitor (BSCI) FX125L has been shown to suppress uterine contraction, prevent preterm birth (PTB) induced by Group B Streptococcus in nonhuman primates, and inhibit uterine cytokine/chemokine expression in a murine model of bacterial endotoxin (LPS)-induced PTB. This study aimed to determine the mechanism(s) of BSCI action on human myometrial smooth muscle cells. We hypothesized that BSCI prevents infection-induced contraction of uterine myocytes by inhibiting the secretion of pro-inflammatory cytokines, the expression of contraction-associated proteins and disruption of myocyte interaction with tissue macrophages. Myometrial biopsies and peripheral blood were collected from women at term (not in labour) undergoing an elective caesarean section. Myocytes were isolated and treated with LPS with/out BSCI; conditioned media was collected; cytokine secretion was analyzed by ELISA; and protein expression was detected by immunoblotting and immunocytochemistry. Functional gap junction formation was assessed by parachute assay. Collagen lattices were used to examine myocyte contraction with/out blood-derived macrophages and BSCI. We found that BSCI inhibited (1) LPS-induced activation of transcription factor NF-kB; (2) secretion of chemokines (MCP-1/CCL2 and IL-8/CXCL8); (3) Connexin43-mediated intercellular connectivity, thereby preventing myocyte–macrophage crosstalk; and (4) myocyte contraction. BSCI represents novel therapeutics for prevention of inflammation-induced PTB in women.
Collapse
Affiliation(s)
- Adam Boros-Rausch
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-416-586-4800 (ext. 5635); Fax: +1-416-586-5116
| | - Stephen James Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|