1
|
Zhang Y, Xia N, Hu Y, Zhu W, Yang C, Su J. Bactericidal ability of target acidic phospholipids and phagocytosis of CDC42 GTPase-mediated cytoskeletal rearrangement underlie functional conservation of CXCL12 in vertebrates. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2713-2729. [PMID: 39279006 DOI: 10.1007/s11427-023-2625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 09/18/2024]
Abstract
Chemokine CXCL12 plays a crucial role in both direct bactericidal activity and phagocytosis in humans. However, the mechanisms and evolutionary functions of these processes in vertebrates remain largely unknown. In this study, we found that the direct bactericidal activity of CXCL12 is highly conserved across various vertebrate lineages, including Arctic lamprey (Lampetra japonica), Basking shark (Cetorhinus maximus), grass carp (Ctenopharyngodon idella), Western clawed frog (Xenopus tropicalis), Green anole (Anolis carolinensis), chicken (Gallus gallus), and human (Homo sapiens). CXCL12 also has been shown to promote phagocytosis in lower and higher vertebrates. We then employed C. idella CXCL12a (CiCXCL12a) as a model to further investigate its immune functions and underlying mechanisms. CiCXCL12a exerts direct broad-spectrum antibacterial activity by targeting bacterial acidic phospholipids, resulting in bacterial cell membrane perforation, and eventual lysis. Monocytes/macrophages are attracted to the infection sites for phagocytosis through the rapid production of CiCXCL12a during bacterial infection. CiCXCL12a induces CDC42 and CDC42 GTPase activation, which in turn mediates F-actin polymerization and cytoskeletal rearrangement. The interaction between F-actin and Aeromonas hydrophila facilitates bacterial internalization into monocytes/macrophages. Additionally, A. hydrophila is colocalized within early endosomes, late endosomes and lysosomes, ultimately degrading within phagolysosomes. CiCXCL12a also activates PI3K-AKT, JAK-STAT5 and MAPK-ERK signaling pathways. Notably, only the PI3K-AKT signaling pathway inhibits LPS-induced monocyte/macrophage apoptosis. Thus, CiCXCL12a plays key roles in reducing tissue bacterial loads, attenuating organ injury, and decreasing mortality rates. Altogether, our findings elucidate the conserved mechanisms underlying CXCL12-mediated bactericidal activity and phagocytosis, providing novel perspectives into the immune functions of CXCL12 in vertebrates.
Collapse
Affiliation(s)
- Yanqi Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ning Xia
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Lao J, Zhu H, You Q, Nie M, Lal Pathak J. Updates on the role of leukocyte cell-derived chemotaxin-2 in inflammation regulation and immunomodulation. Cytokine 2024; 181:156697. [PMID: 39024680 DOI: 10.1016/j.cyto.2024.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2), originally identified as a novel neutrophil chemokine, is a multifunctional secreted factor primarily produced in hepatocytes. However, many studies have shown that LECT2 is a pleiotropic protein that not only exerts chemotaxis properties as a cytokine but also plays an important role in inflammatory regulation and immune regulation. Pathogens such as bacteria and the role of the host immune system are key factors in the inflammatory response. In antibacterial, LECT2 can directly destroy bacterial structure or affect the normal metabolism of bacteria to inactivate bacteria and can also achieve this effect by activating immune cells and regulating cytokines. In immunomodulation, LECT2 has neutrophil chemotactic activity and regulates the quantities of Natural killer T (NKT) cells, regulatory T cells, monocytes/macrophages, granulocytes, and/or the expression of associated cytokines, thereby influencing their effect in immune reaction. Inflammation and immune regulation are closely related to a variety of diseases, such as bacterial infection, liver cirrhosis, dermatitis, coronary atherosclerotic heart disease, and so on. This review summarizes the basic and clinical studies of LECT2 in antibacterial effects and its effects on immune cells to explore the mechanism of LECT in inflammatory regulation and immune regulation in physiological and pathological conditions better.
Collapse
Affiliation(s)
- Jiaying Lao
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haohui Zhu
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Qianhui You
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Min Nie
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China; Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| | - Janak Lal Pathak
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| |
Collapse
|
3
|
Teng J, Zhao Y, Li YB, Xue LY, Zhai YX, Liu JR, Wang H, Ji XS. LECT2 mediates antibacterial immune response induced by Nocardia seriolae infection in the northern snakehead. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109708. [PMID: 38908810 DOI: 10.1016/j.fsi.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.
Collapse
Affiliation(s)
- Jian Teng
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Yu Bao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yi Xiang Zhai
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Jian Ru Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Hui Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction By Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, 271000, China.
| |
Collapse
|
4
|
Rojas I, Caballero-Solares A, Vadboncoeur É, Sandrelli RM, Hall JR, Clow KA, Parrish CC, Rise ML, Swanson AK, Gamperl AK. Prolonged Cold Exposure Negatively Impacts Atlantic Salmon ( Salmo salar) Liver Metabolism and Function. BIOLOGY 2024; 13:494. [PMID: 39056688 PMCID: PMC11273521 DOI: 10.3390/biology13070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Large-scale mortality events have occurred during the winter in Atlantic salmon sea cages in Eastern Canada and Iceland. Thus, in salmon held at 3 °C that were apparently healthy (i.e., asymptomatic) and that had 'early' and 'advanced' symptoms of 'winter syndrome'/'winter disease' (WS/WD), we measured hepatic lipid classes and fatty acid levels, and the transcript expression of 34 molecular markers of fatty liver disease (FLD; a clinical sign of WS/WD). In addition, we correlated our results with previously reported characteristics associated with this disease's progression in these same individuals. Total lipid and triacylglycerol (TAG) levels increased by ~50%, and the expression of 32 of the 34 genes was dysregulated, in fish with symptoms of FLD. TAG was positively correlated with markers of inflammation (5loxa, saa5), hepatosomatic index (HSI), and plasma aspartate aminotransferase levels, but negatively correlated with genes related to lipid metabolism (elovl5b, fabp3a, cd36c), oxidative stress (catc), and growth (igf1). Multivariate analyses clearly showed that the three groups of fish were different, and that saa5 was the largest contributor to differences. Our results provide a number of biomarkers for FLD in salmon, and very strong evidence that prolonged cold exposure can trigger FLD in this ecologically and economically important species.
Collapse
Affiliation(s)
- Isis Rojas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Émile Vadboncoeur
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| | | | - Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada (A.K.G.)
| |
Collapse
|
5
|
Hu YZ, Wu CS, Wang J, Han XQ, Si PY, Zhang YA, Zhang XJ. Antimicrobial Protein LECT2-b Helps Maintain Gut Microbiota Homeostasis via Selectively Targeting Certain Pathogenic Bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:81-95. [PMID: 38038392 DOI: 10.4049/jimmunol.2300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 12/02/2023]
Abstract
Antimicrobial peptides/proteins (AMPs) constitute a critical component of gut immunity in animals, protecting the gut from pathogenic bacteria. However, the interactions between AMPs and gut microbiota remain elusive. In this study, we show that leukocyte-derived chemotaxin-2 (LECT2)-b, a recently discovered AMP, helps maintain gut homeostasis in grass carp (Ctenopharyngodon idella), one of the major farmed fish species globally, by directly regulating the gut microbiota. Knockdown of LECT2-b resulted in dysregulation of the gut microbiota. Specifically, LECT2-b deficiency led to the dominance of Proteobacteria, consisting of proinflammatory bacterial species, over Firmicutes, which includes anti-inflammatory bacteria. In addition, the opportunistic pathogenic bacteria genus Aeromonas became the dominant genus replacing the probiotic bacteria Lactobacillus and Bacillus. Further analysis revealed that this effect was due to the direct and selective inhibition of certain pathogenic bacterial species by LECT2-b. Moreover, LECT2-b knockdown promoted biofilm formation by gut microbiota, resulting in tissue damage and inflammation. Importantly, LECT2-b treatment alleviated the negative effects induced by LECT2-b knockdown. These findings highlight the crucial role of LECT2-b in maintaining the gut microbiota homeostasis and mucosal health. Overall, our study provides important data for understanding the roles of AMPs in the regulation of gut homeostasis in animals.
Collapse
Affiliation(s)
- Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Pei-Yue Si
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
7
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
8
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|