1
|
Bellani S, Spagnolo P. What rationale for treatment of occupational interstitial lung diseases with the drugs approved for idiopathic pulmonary fibrosis? Curr Opin Allergy Clin Immunol 2025; 25:95-104. [PMID: 39680372 DOI: 10.1097/aci.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PURPOSE OF REVIEW To critically discuss the rationale for the use of drugs approved for idiopathic pulmonary fibrosis (IPF) to treat occupational interstitial lung diseases (OILDs). RECENT FINDINGS Although IPF and OILDs share several clinical, radiological and probably pathogenetic features, currently, OILDs do not have a standard of care. In recent years, our knowledge and understanding of ILDs has improved substantially. Recently, the progressive pulmonary fibrosis (PPF) phenotype, which refers to non-IPF fibrotic ILDs that progress despite appropriate treatment, has been defined. OILDs may also be progressive. Nintedanib, initially approved for treatment of IPF, is also approved in patients with PPF. On the other hand, pirfenidone is approved in IPF but not in PPF, due to the lack of robust evidence of efficacy in this patient subset. SUMMARY OILDs are a large and highly heterogeneous group of conditions without a proper standard of care. Nintedanib may slow functional decline and disease progression in progressive OILDs, and new clinical trials are ongoing.
Collapse
Affiliation(s)
- Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | |
Collapse
|
2
|
Chatrdooz H, Sargolzaei J. An Overview of Property, Design, and Functionality of Linkers for Fusion Protein Construction. Proteins 2025. [PMID: 40099816 DOI: 10.1002/prot.26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
Linkers are naturally occurring short amino acid sequences that are used to separate domains within a protein. The advent of recombinant DNA technology has made it possible to combine two interacting partners by introducing artificial linkers that often, allow for the production of stable and functional proteins. Glycine-rich linkers are useful for transient interactions, especially where the interaction is weak, by covalently linking proteins and forming a stable protein-protein complex. These linkers have also been used to generate covalently stable dimers and to connect two independent domains that create a ligand binding site or recognition sequence. Various structures of covalently linked protein complexes have been described using nuclear magnetic resonance methods, cryo-electron microscopy techniques, and X-ray crystallography; in addition, several structures where linkers have been used to generate stable protein-protein complexes, improve protein solubility, and obtain protein dimers are investigated, and also the design and engineering of the linker in fusion proteins is discussed. Therefore, one of the main factors for linker design and optimization is their flexibility, which can directly contribute to the physical distance between the domains of a fusion protein and describe the tendency of a linker to maintain a stable conformation during expression. We summarize the research on design and bioinformatics can be used to predict the spatial structure of the fusion protein. To perform simulations of spatial structures and drug molecule design, future research will concentrate on various correlation models.
Collapse
Affiliation(s)
- Hadis Chatrdooz
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
3
|
Moore C, Liao SY, Wood C, Sarkar A, Cardwell J, MacPhail K, Mroz MM, Riley C, Mould K, Restrepo C, Li L, Maier LA, Yang IV. Single Cell Transcriptome Signatures of Sarcoidosis in Lung Immune Cell Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633917. [PMID: 39896662 PMCID: PMC11785102 DOI: 10.1101/2025.01.20.633917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Rationale To identify cell specific molecular changes associated with sarcoidosis risk and progression, we aimed to characterize the cellular composition, gene expression patterns, and cell-cell interactions in BAL cells from patients with sarcoidosis (both progressive and non-progressive) and healthy controls. Methods Single cell RNA-seq data were collected on 12 sarcoidosis and 4 control participants. We combined scRNA-seq data from these participants with our previously collected data on 4 sarcoidosis and 10 control participants for a final sample size of 16 sarcoidosis cases (8 progressive and 8 non-progressive) and 14 controls. Following initial preprocessing in CellRanger, data were quality controlled, combined, and clustered in Seurat. We tested differences in cell proportions by disease group using F-tests on cell proportions and differences in gene expression using pseudobulk analysis. Cell to cell communication and pathway analysis were performed using CellChat. Results We identified five macrophage populations: resident, high metallothionein (MT) resident, recruited, profibrotic recruited, and proliferating macrophages. Each subpopulation displayed unique gene expression profiles, with notable differential expression of genes and pathways linked to sarcoidosis in resident macrophages, recruited macrophages, and proliferating macrophages. We also observed changes in gene expression associated with disease progression in resident and recruited macrophages. In non-macrophages cells, we observed a significant reduction in the number of B cells in sarcoidosis patients compared to controls. Among T cell populations, we identified specific transcriptional alterations at gene and pathway level. Additionally, we observed distinct differences in cell-to-cell interactions of macrophages and T cells between sarcoidosis patients and healthy controls. Conclusions These findings underscore the complexity of immune cell involvement in sarcoidosis and highlight potential cellular and molecular targets for further investigation.
Collapse
|
4
|
You Y, Wu X, Yuan H, He Y, Chen Y, Wang S, Min H, Chen J, Li C. Crystalline silica-induced recruitment and immuno-imbalance of CD4 + tissue resident memory T cells promote silicosis progression. Commun Biol 2024; 7:971. [PMID: 39122899 PMCID: PMC11316055 DOI: 10.1038/s42003-024-06662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational crystalline silica (CS) particle exposure leads to silicosis. The burden of CS-associated disease remains high, and treatment options are limited due to vague mechanisms. Here we show that pulmonary CD4+ tissue-resident memory T cells (TRM) accumulate in response to CS particles, mediating the pathogenesis of silicosis. The TRM cells are derived from peripheral lymphocyte recruitment and in situ expansion. Specifically, CD69+CD103+ TRM-Tregs depend more on circulating T cell replenishment. CD69 and CD103 can divide the TRM cells into functionally distinct subsets, mirroring the immuno-balance within CD4+ TRM cells. However, targeting CD103+ TRM-Tregs do not mitigate disease phenotype since the TRM subsets exert immunosuppressive but not pro-fibrotic roles. After identifying pathogenic CD69+CD103- subsets, we highlight IL-7 for their maintenance and function, that present a promising avenue for mitigating silicosis. Together, our findings highlight the distinct role of CD4+ TRM cells in mediating CS-induced fibrosis and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Xiulin Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Yinghui Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Sisi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, PR China.
| |
Collapse
|
5
|
Spagnolo P, Ryerson CJ, Guler S, Feary J, Churg A, Fontenot AP, Piciucchi S, Udwadia Z, Corte TJ, Wuyts WA, Johannson KA, Cottin V. Occupational interstitial lung diseases. J Intern Med 2023; 294:798-815. [PMID: 37535448 DOI: 10.1111/joim.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Millions of workers are exposed to substances known to cause occupational interstitial lung diseases (ILDs), particularly in developing countries. However, the burden of the disease is likely to be underestimated due to under-recognition, under-reporting or both. The diagnosis of occupational ILD requires a high level of suspicion and a thorough occupational history, as occupational and non-occupational ILDs may be clinically, functionally and radiologically indistinguishable, leading to delayed diagnosis and inappropriate management. A potential occupational aetiology should always be considered in the differential diagnosis of ILD, as removal from the workplace exposure, with or without treatment, is a key therapeutic intervention and may lead to significant improvement. In this article, we provide an overview of the 'traditional' inorganic dust-related ILDs but also address idiopathic pulmonary fibrosis and the immunologically mediated chronic beryllium disease, sarcoidosis and hypersensitivity pneumonitis, with emphasis on the importance of surveillance and prevention for reducing the burden of these conditions. To this end, health-care professionals should be specifically trained about the importance of occupational exposures as a potential cause of ILD.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory, Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Christopher J Ryerson
- Department of Medicine, St. Paul's Hospital, University of British Columbia and Centre for Heart Lung Innovation, Vancouver, Canada
| | - Sabina Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Johanna Feary
- Department of Occupational and Environmental Medicine, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus Aurora, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus Aurora, Aurora, Colorado, USA
| | - Sara Piciucchi
- Department of Radiology, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Zarir Udwadia
- Hinduja Hospital and Research Center, Breach Candy Hospital, Mumbai, Maharashtra, India
| | - Tamera J Corte
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, University of Leuven, Leuven, Belgium
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, UMR754, IVPC, Lyon, France
| |
Collapse
|
6
|
Sarcoidosis and COVID-19: At the Cross-Road between Immunopathology and Clinical Manifestation. Biomedicines 2022; 10:biomedicines10102525. [PMID: 36289785 PMCID: PMC9599235 DOI: 10.3390/biomedicines10102525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with dysregulation of the immune system featuring inappropriate immune responses, exacerbation of inflammatory responses, and multiple organ dysfunction syndrome in patients with severe disease. Sarcoidosis, also known as Besnier-Boeck-Schaumann disease, is an idiopathic granulomatous multisystem disease characterized by dense epithelioid non-necrotizing lesions with varying degrees of lymphocytic inflammation. These two diseases have similar clinical manifestations and may influence each other at multiple levels, eventually affecting their clinical courses and prognosis. Notably, sarcoidosis patients are at high risk of severe COVID-19 pneumonia because of the underlying lung disease and chronic immunosuppressive treatment. In this narrative review, we will discuss interactions between sarcoidosis and COVID-19 in terms of clinical manifestations, treatment, and pathogenesis, including the role of the dysregulated renin-angiotensin system, altered immune responses involving increased cytokine levels and immune system hyperactivation, and cellular death pathways.
Collapse
|