1
|
Dopffel N, Mayers K, Kedir A, Alagic E, An-Stepec BA, Djurhuus K, Boldt D, Beeder J, Hoth S. Microbial hydrogen consumption leads to a significant pH increase under high-saline-conditions: implications for hydrogen storage in salt caverns. Sci Rep 2023; 13:10564. [PMID: 37386256 PMCID: PMC10310820 DOI: 10.1038/s41598-023-37630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
Salt caverns have been successfully used for natural gas storage globally since the 1940s and are now under consideration for hydrogen (H2) storage, which is needed in large quantities to decarbonize the economy to finally reach a net zero by 2050. Salt caverns are not sterile and H2 is a ubiquitous electron donor for microorganisms. This could entail that the injected H2 will be microbially consumed, leading to a volumetric loss and potential production of toxic H2S. However, the extent and rates of this microbial H2 consumption under high-saline cavern conditions are not yet understood. To investigate microbial consumption rates, we cultured the halophilic sulphate-reducing bacteria Desulfohalobium retbaense and the halophilic methanogen Methanocalculus halotolerans under different H2 partial pressures. Both strains consumed H2, but consumption rates slowed down significantly over time. The activity loss correlated with a significant pH increase (up to pH 9) in the media due to intense proton- and bicarbonate consumption. In the case of sulphate reduction, this pH increase led to dissolution of all produced H2S in the liquid phase. We compared these observations to a brine retrieved from a salt cavern located in Northern Germany, which was then incubated with 100% H2 over several months. We again observed a H2 loss (up to 12%) with a concurrent increase in pH of up to 8.5 especially when additional nutrients were added to the brine. Our results clearly show that sulphate-reducing microbes present in salt caverns consume H2, which will be accompanied by a significant pH increase, resulting in reduced activity over time. This potentially self-limiting process of pH increase during sulphate-reduction will be advantageous for H2 storage in low-buffering environments like salt caverns.
Collapse
Affiliation(s)
- Nicole Dopffel
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway.
| | - Kyle Mayers
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | - Abduljelil Kedir
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | - Edin Alagic
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | | | - Ketil Djurhuus
- NORCE Norwegian Research Center AS, Nygårdsgaten 112, 5008, Bergen, Norway
| | | | | | | |
Collapse
|
2
|
Sefrji FO, Michoud G, Marasco R, Merlino G, Daffonchio D. Mangrovivirga cuniculi gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family Mangrovivirgaceae fam. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34214025 PMCID: PMC8489838 DOI: 10.1099/ijsem.0.004866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium, designated strain R1DC9T, was isolated from sediments of a mangrove stand on the Red Sea coast of Saudi Arabia via diffusion chamber cultivation. Strain R1DC9T grew at 20-40 °C (optimum, 37 °C), pH 6-10 (optimum, pH 8) and 3-11 % NaCl (optimum, 7-9 %) in the cultivation medium. The genome of R1DC9T was 4 661 901 bp long and featured a G+C content of 63.1 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis using 120 concatenated single-copy genes revealed that R1DC9T represents a distinct lineage in the order Cytophagales and the phylum Bacteroidetes separated from the Roseivirgaceae and Marivirgaceae families. R1DC9T displayed 90 and 89 % 16S rRNA gene sequence identities with Marivirga sericea DSM 4125T and Roseivirga ehrenbergii KMM 6017T, respectively. The predominant quinone was MK7. The polar lipids were phosphatidylethanolamine, two unknown phospholipids and two unknown lipids. The predominant cellular fatty acids were the saturated branch chain fatty acids iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 0, along with a low percentage of the monounsaturated fatty acid C16 : 1 ω5c. Based on differences in phenotypic, physiological and biochemical characteristics from known relatives, and the results of phylogenetic analyses, R1DC9T (=KCTC 72349T=JCM 33609T=NCCB 100698T) is proposed to represent a novel species in a new genus, and the name Mangrovivirga cuniculi gen. nov., sp. nov. is proposed. The distinct phylogenetic lineage among the families in the order Cytophagales indicates that R1DC9T represents a new family for which the name Mangrovivirgaceae fam. nov. is proposed.
Collapse
Affiliation(s)
- Fatmah O Sefrji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giuseppe Merlino
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26975-26989. [PMID: 33496949 DOI: 10.1007/s11356-021-12544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Jahnke LL, Des Marais DJ. Carbon isotopic composition of lipid biomarkers from an endoevaporitic gypsum crust microbial mat reveals cycling of mineralized organic carbon. GEOBIOLOGY 2019; 17:643-659. [PMID: 31361088 DOI: 10.1111/gbi.12355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/02/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13 C biosignatures. The δ13 C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan-orange (TO) at the surface, green (G), purple (P), and olive-black (OB) at the bottom. δ13 C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13 C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13 CTOC of the underlying G was 3‰ greater than that of TO. The most δ13 C-depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n-alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ∆[δ13 CTOC - δ13 C∑IPFA ] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13 C-enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate-reducing bacteria. P hosted an active sulfur-dependent microbial community. IPFA and bishomohopanol were 13 C-depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13 C-enriched. Synthesis of alkanes in P was evidenced only by 13 C-depleted n-octadecane and 8-methylhexadecane. In OB, the marked increase of total inorganic carbon δ13 C (δ13 CTIC ) of >6‰ perhaps indicated terminal mineralization. This δ13 CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13 C-depleted methane from the mat.
Collapse
Affiliation(s)
- Linda L Jahnke
- Exobiology Branch, Space Science & Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA, USA
| | - David J Des Marais
- Exobiology Branch, Space Science & Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
5
|
Zeaiter Z, Marasco R, Booth JM, Prosdocimi EM, Mapelli F, Callegari M, Fusi M, Michoud G, Molinari F, Daffonchio D, Borin S, Crotti E. Phenomics and Genomics Reveal Adaptation of Virgibacillus dokdonensis Strain 21D to Its Origin of Isolation, the Seawater-Brine Interface of the Mediterranean Sea Deep Hypersaline Anoxic Basin Discovery. Front Microbiol 2019; 10:1304. [PMID: 31244812 PMCID: PMC6581673 DOI: 10.3389/fmicb.2019.01304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 12/03/2022] Open
Abstract
The adaptation of sporeformers to extreme environmental conditions is frequently questioned due to their capacity to produce highly resistant endospores that are considered as resting contaminants, not representing populations adapted to the system. In this work, in order to gain a better understanding of bacterial adaptation to extreme habitats, we investigated the phenotypic and genomic characteristics of the halophile Virgibacillus sp. 21D isolated from the seawater-brine interface (SBI) of the MgCl2-saturated deep hypersaline anoxic basin Discovery located in the Eastern Mediterranean Sea. Vegetative cells of strain 21D showed the ability to grow in the presence of high concentrations of MgCl2, such as 14.28% corresponding to 1.5 M. Biolog phenotype MicroArray (PM) was adopted to investigate the strain phenotype, with reference to carbon energy utilization and osmotic tolerance. The strain was able to metabolize only 8.4% of 190 carbon sources provided in the PM1 and PM2 plates, mainly carbohydrates, in accordance with the low availability of nutrients in its habitat of origin. By using in silico DNA-DNA hybridization the analysis of strain 21D genome, assembled in one circular contig, revealed that the strain belongs to the species Virgibacillus dokdonensis. The genome presented compatible solute-based osmoadaptation traits, including genes encoding for osmotically activated glycine-betaine/carnitine/choline ABC transporters, as well as ectoine synthase enzymes. Osmoadaptation of the strain was then confirmed with phenotypic assays by using the osmolyte PM9 Biolog plate and growth experiments. Furthermore, the neutral isoelectric point of the reconstructed proteome suggested that the strain osmoadaptation was mainly mediated by compatible solutes. The presence of genes involved in iron acquisition and metabolism indicated that osmoadaptation was tailored to the iron-depleted saline waters of the Discovery SBI. Overall, both phenomics and genomics highlighted the potential capability of V. dokdonensis 21D vegetative cells to adapt to the environmental conditions in Discovery SBI.
Collapse
Affiliation(s)
- Zahraa Zeaiter
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Ramona Marasco
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jenny M. Booth
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Erica M. Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Matteo Callegari
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marco Fusi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francesco Molinari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Boyd ES, Yu RQ, Barkay T, Hamilton TL, Baxter BK, Naftz DL, Marvin-DiPasquale M. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:495-506. [PMID: 28057343 DOI: 10.1016/j.scitotenv.2016.12.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| | - Ri-Qing Yu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Bonnie K Baxter
- Department of Biology, Westminster College, Salt Lake City, UT 84105, United States
| | - David L Naftz
- United States Geological Survey, Helena, MT 59601, United States
| | | |
Collapse
|
7
|
Wu R, Wilton R, Cuff ME, Endres M, Babnigg G, Edirisinghe JN, Henry CS, Joachimiak A, Schiffer M, Pokkuluri PR. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain. Protein Sci 2017; 26:857-869. [PMID: 28168783 DOI: 10.1002/pro.3134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/07/2022]
Abstract
We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.
Collapse
Affiliation(s)
- R Wu
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - R Wilton
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - M E Cuff
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, 60439
| | - M Endres
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - G Babnigg
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - J N Edirisinghe
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Computation Institute, University of Chicago, Chicago, Illinois, 60637
| | - C S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Computation Institute, University of Chicago, Chicago, Illinois, 60637
| | - A Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, 60439.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - M Schiffer
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - P R Pokkuluri
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| |
Collapse
|
8
|
Nigro LM, Hyde AS, MacGregor BJ, Teske A. Phylogeography, Salinity Adaptations and Metabolic Potential of the Candidate Division KB1 Bacteria Based on a Partial Single Cell Genome. Front Microbiol 2016; 7:1266. [PMID: 27597842 PMCID: PMC4993014 DOI: 10.3389/fmicb.2016.01266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023] Open
Abstract
Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines – that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.
Collapse
Affiliation(s)
- Lisa M Nigro
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Andrew S Hyde
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
9
|
Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park. GEOBIOLOGY 2016; 14:255-275. [PMID: 26750514 DOI: 10.1111/gbi.12173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers the first detailed insight into how DIR may impact the Fe geochemistry and isotope composition of a Fe-rich, circumneutral pH geothermal environment.
Collapse
Affiliation(s)
- N W Fortney
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - S He
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - B J Converse
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - B L Beard
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - C M Johnson
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - E S Boyd
- Department of Microbiology and Immunology, NASA Astrobiology Institute, Montana State University, Bozeman, MT, USA
| | - E E Roden
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
11
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
12
|
Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CC, Brettin T, Detter JC, Tapia R, Han C, Heimerl T, Weikl F, Brambilla E, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Thermosphaera aggregans type strain (M11TL). Stand Genomic Sci 2010; 2:245-59. [PMID: 21304709 PMCID: PMC3035292 DOI: 10.4056/sigs.821804] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TL(T) was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
13
|
von Jan M, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng JF, Lucas S, Chen F, Nolan M, Goodwin L, Han C, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Chertkov O, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Saunders E, Brettin T, Detter JC, Chain P, Eichinger K, Huber H, Spring S, Rohde M, Göker M, Wirth R, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Archaeoglobus profundus type strain (AV18). Stand Genomic Sci 2010; 2:327-46. [PMID: 21304717 PMCID: PMC3035285 DOI: 10.4056/sigs.942153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the euryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeoglobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no validly published name. All members were isolated from marine hydrothermal habitats and are obligate anaerobes. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the class Archaeoglobi. The 1,563,423 bp genome with its 1,858 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|