1
|
Smith-Cortinez N, Heegsma J, Podunavac M, Zakarian A, Cardenas JC, Faber KN. Novel Inositol 1,4,5-Trisphosphate Receptor Inhibitor Antagonizes Hepatic Stellate Cell Activation: A Potential Drug to Treat Liver Fibrosis. Cells 2024; 13:765. [PMID: 38727301 PMCID: PMC11083487 DOI: 10.3390/cells13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they proliferate, migrate, and produce ECM. Calcium signaling, involving the inositol 1,4,5-trisphosphate receptor (IP3R), regulates HSC activation. This study investigated the efficacy of a novel IP3R inhibitor, desmethylxestospongin B (dmXeB), in preventing HSC activation. Freshly isolated rat HSCs were activated in vitro in the presence of varying dmXeB concentrations. The dmXeB effectively inhibited HSC proliferation, migration, and expression of fibrosis markers without toxicity to the primary rat hepatocytes or human liver organoids. Furthermore, dmXeB preserved the quiescent phenotype of HSCs marked by retained vitamin A storage. Mechanistically, dmXeB suppressed mitochondrial respiration in activated HSCs while enhancing glycolytic activity. Notably, methyl pyruvate, dimethyl α-ketoglutarate, and nucleoside supplementation all individually restored HSC proliferation despite dmXeB treatment. Overall, dmXeB demonstrates promising anti-fibrotic effects by inhibiting HSC activation via IP3R antagonism without adverse effects on other liver cells. These findings highlight dmXeB as a potential therapeutic agent for liver fibrosis treatment, offering a targeted approach to mitigate liver fibrosis progression and its associated complications.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| | - Masa Podunavac
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
| | - J. César Cardenas
- Department of Chemistry and Biochemistry, University of California, Oakland, CA 94607, USA
- Center for Integrative Biology, Universidad Mayor, Santiago 7510041, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands
| |
Collapse
|
2
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Al-Akashi Z, Zujur D, Kamiya D, Kato T, Kondo T, Ikeya M. Selective vulnerability of human-induced pluripotent stem cells to dihydroorotate dehydrogenase inhibition during mesenchymal stem/stromal cell purification. Front Cell Dev Biol 2023; 11:1089945. [PMID: 36814599 PMCID: PMC9939518 DOI: 10.3389/fcell.2023.1089945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates. Contrastingly, BRQ-treated iMSCs showed no changes in survival, differentiation potential, or gene expression. The results suggest that BRQ is a potential agent for the effective purification of iMSCs from a mixed population of iMSCs and hiPSCs, which is a crucial step in successful iMSC-based therapy.
Collapse
Affiliation(s)
- Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Toru Kondo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan,*Correspondence: Makoto Ikeya,
| |
Collapse
|
4
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
5
|
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol 2022; 5:620. [PMID: 35739187 PMCID: PMC9226000 DOI: 10.1038/s42003-022-03568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.
Collapse
Affiliation(s)
- David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emiliano González-Vioque
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta del Hierro-Majadahonda, Madrid, Spain
| | - Marris G Dibley
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Vallbona-Garcia
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Borror MB, Girotti M, Kar A, Cain MK, Gao X, MacKay VL, Herron B, Bhaskaran S, Becerra S, Novy N, Ventura N, Johnson TE, Kennedy BK, Rea SL. Inhibition of ATR Reverses a Mitochondrial Respiratory Insufficiency. Cells 2022; 11:1731. [PMID: 35681427 PMCID: PMC9179431 DOI: 10.3390/cells11111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases that affect the mitochondrial electron transport chain (ETC) often manifest as threshold effect disorders, meaning patients only become symptomatic once a certain level of ETC dysfunction is reached. Cells can invoke mechanisms to circumvent reaching their critical ETC threshold, but it is an ongoing challenge to identify such processes. In the nematode Caenorhabditis elegans, severe reduction of mitochondrial ETC activity shortens life, but mild reduction actually extends it, providing an opportunity to identify threshold circumvention mechanisms. Here, we show that removal of ATL-1, but not ATM-1, worm orthologs of ATR and ATM, respectively, key nuclear DNA damage checkpoint proteins in human cells, unexpectedly lessens the severity of ETC dysfunction. Multiple genetic and biochemical tests show no evidence for increased mutation or DNA breakage in animals exposed to ETC disruption. Reduced ETC function instead alters nucleotide ratios within both the ribo- and deoxyribo-nucleotide pools, and causes stalling of RNA polymerase, which is also known to activate ATR. Unexpectedly, atl-1 mutants confronted with mitochondrial ETC disruption maintain normal levels of oxygen consumption, and have an increased abundance of translating ribosomes. This suggests checkpoint signaling by ATL-1 normally dampens cytoplasmic translation. Taken together, our data suggest a model whereby ETC insufficiency in C. elegans results in nucleotide imbalances leading to the stalling of RNA polymerase, activation of ATL-1, dampening of global translation, and magnification of ETC dysfunction. The loss of ATL-1 effectively reverses the severity of ETC disruption so that animals become phenotypically closer to wild type.
Collapse
Affiliation(s)
- Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Milena Girotti
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Adwitiya Kar
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Meghan K. Cain
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiaoli Gao
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
| | - Brent Herron
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Shylesh Bhaskaran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sandra Becerra
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan Novy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Natascia Ventura
- IUF—Leibniz Research Institute for Environmental Medicine, 103045 Düsseldorf, Germany;
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 103045 Düsseldorf, Germany
| | - Thomas E. Johnson
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (B.H.); (T.E.J.)
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (V.L.M.); (B.K.K.)
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117542, Singapore
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (M.B.B.); (M.G.); (A.K.); (M.K.C.); (S.B.); (S.B.)
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
7
|
Desler C, Durhuus JA, Hansen TLL, Anugula S, Zelander NT, Bøggild S, Rasmussen LJ. Partial inhibition of mitochondrial-linked pyrimidine synthesis increases tumorigenic potential and lysosome accumulation. Mitochondrion 2022; 64:73-81. [PMID: 35346867 DOI: 10.1016/j.mito.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
The correlation between mitochondrial function and oncogenesis is complex and is not fully understood. Here we determine the importance of mitochondrial-linked pyrimidine synthesis for the aggressiveness of cancer cells. The enzyme dihydroorotate dehydrogenase (DHODH) links oxidative phosphorylation to de novo synthesis of pyrimidines. We demonstrate that an inhibition of DHODH results in a respiration-independent significant increase of anchorage-independent growth but does not affect DNA repair ability. Instead, we show an autophagy-independent increase of lysosomes. The results of this study suggest that inhibition of mitochondrial-linked pyrimidine synthesis in cancer cells results in a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Jon Ambæk Durhuus
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark; Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | | | - Sharath Anugula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Nadia Thaulov Zelander
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Sisse Bøggild
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
|
9
|
Peeters MJW, Aehnlich P, Pizzella A, Mølgaard K, Seremet T, Met Ö, Rasmussen LJ, Thor Straten P, Desler C. Mitochondrial-Linked De Novo Pyrimidine Biosynthesis Dictates Human T-Cell Proliferation but Not Expression of Effector Molecules. Front Immunol 2021; 12:718863. [PMID: 34899685 PMCID: PMC8652221 DOI: 10.3389/fimmu.2021.718863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
T-cell activation upon antigen stimulation is essential for the continuation of the adaptive immune response. Impairment of mitochondrial oxidative phosphorylation is a well-known disruptor of T-cell activation. Dihydroorotate dehydrogenase (DHODH) is a component of the de novo synthesis of pyrimidines, the activity of which depends on functional oxidative phosphorylation. Under circumstances of an inhibited oxidative phosphorylation, DHODH becomes rate-limiting. Inhibition of DHODH is known to block clonal expansion and expression of effector molecules of activated T cells. However, this effect has been suggested to be caused by downstream impairment of oxidative phosphorylation rather than a lower rate of pyrimidine synthesis. In this study, we successfully inhibit the DHODH of T cells with no residual effect on oxidative phosphorylation and demonstrate a dose-dependent inhibition of proliferation of activated CD3+ T cells. This block is fully rescued when uridine is supplemented. Inhibition of DHODH does not alter expression of effector molecules but results in decreased intracellular levels of deoxypyrimidines without decreasing cell viability. Our results clearly demonstrate the DHODH and mitochondrial linked pyrimidine synthesis as an independent and important cytostatic regulator of activated T cells.
Collapse
Affiliation(s)
- Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Pia Aehnlich
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Adriano Pizzella
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Mølgaard
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark.,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Copenhagen, Denmark.,Department of Immunology and Microbiology, Inflammation and Cancer Group, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem 2021; 171:325-338. [PMID: 34865026 DOI: 10.1093/jb/mvab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) replication is tightly regulated and necessary for cellular homeostasis; however, its relationship with mitochondrial metabolism remains unclear. Advances in metabolomics integrated with the rapid isolation of mitochondria will allow for remarkable progress in analyzing mitochondrial metabolism. Here, we propose a novel methodology for mitochondria-targeted metabolomics, which employs a quick isolation procedure using a hemolytic toxin from Streptococcus pyogenes streptolysin O (SLO). SLO-isolation of mitochondria from cultured HEK293 cells is time- and labor-saving for simultaneous multi-sample processing and has been applied to various other cell lines in this study. Furthermore, our method can detect the time-dependent reduction in mitochondrial ATP in response to a glycolytic inhibitor 2-deoxyglucose, indicating the suitability to prepare metabolite analysis-competent mitochondria. Using this methodology, we searched for specific mitochondrial metabolites associated with mtDNA replication activation, and nucleotides and NAD+ were identified to be prominently altered. Most notably, treatment of β-Nicotinamide Mononucleotide (β-NMN), a precursor of NAD+, to HEK293 cells activated and improved the rate of mtDNA replication by increasing nucleotides in mitochondria and decreasing their degradation products: nucleosides. Our results suggest that β-NMN metabolism play a role in supporting mtDNA replication by maintaining the nucleotide pool balance in the mitochondria.
Collapse
Affiliation(s)
- Tomoko Nomiyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| | - Takehiro Yasukawa
- Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Fukuoka, Japan
| |
Collapse
|
11
|
Ahn E, Lee J, Han J, Lee SM, Kwon KS, Hwang GS. Glutathione is an aging-related metabolic signature in the mouse kidney. Aging (Albany NY) 2021; 13:21009-21028. [PMID: 34492635 PMCID: PMC8457589 DOI: 10.18632/aging.203509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
The ability to maintain systemic metabolic homeostasis through various mechanisms represents a crucial strength of kidneys in the study of metabolic syndrome or aging. Moreover, age-associated kidney failure has been widely accepted. However, efforts to demonstrate aging-dependent renal metabolic rewiring have been limited. In the present study, we investigated aging-related renal metabolic determinants by integrating metabolomic and transcriptomic data sets from kidneys of young (3 months, n = 7 and 3 for respectively) and old (24 months, n = 8 and 3 for respectively) naive C57BL/6 male mice. Metabolite profiling analysis was conducted, followed by data processing via network and pathway analyses, to identify differential metabolites. In the aged group, the levels of glutathione and oxidized glutathione were significantly increased, but the levels of gamma-glutamyl amino acids, amino acids combined with the gamma-glutamyl moiety from glutathione by membrane transpeptidases, and circulating glutathione levels were decreased. In transcriptomic analysis, differential expression of metabolic enzymes is consistent with the hypothesis of aging-dependent rewiring in renal glutathione metabolism; pathway and network analyses further revealed the increased expression of immune-related genes in the aged group. Collectively, our integrative analysis results revealed that defective renal glutathione metabolism is a signature of renal aging. Therefore, we hypothesize that restraining renal glutathione metabolism might alleviate or delay age-associated renal metabolic deterioration, and aberrant activation of the renal immune system.
Collapse
Affiliation(s)
- Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Jisu Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
- Aventi Inc., Yuseong-Gu, Daejeon 34141, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seodaemun-Gu, Seoul 03759, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seodaemun-Gu, Seoul 03760, Korea
| |
Collapse
|
12
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
13
|
Ni M, Black LF, Pan C, Vu H, Pei J, Ko B, Cai L, Solmonson A, Yang C, Nugent KM, Grishin NV, Xing C, Roeder E, DeBerardinis RJ. Metabolic impact of pathogenic variants in the mitochondrial glutamyl-tRNA synthetase EARS2. J Inherit Metab Dis 2021; 44:949-960. [PMID: 33855712 PMCID: PMC9219168 DOI: 10.1002/jimd.12387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.
Collapse
Affiliation(s)
- Min Ni
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lauren F. Black
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chunxiao Pan
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hieu Vu
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jimin Pei
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bookyung Ko
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Cai
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
- Quantitative Biomedical Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ashley Solmonson
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chendong Yang
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Nick V. Grishin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Kirkland D, Kovochich M, More SL, Murray FJ, Monnot AD, Miller JV, Jaeschke H, Jacobson-Kram D, Deore M, Pitchaiyan SK, Unice K, Eichenbaum G. A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 122:104892. [PMID: 33592196 DOI: 10.1016/j.yrtph.2021.104892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.
Collapse
|
15
|
Jaeschke H, Murray FJ, Monnot AD, Jacobson-Kram D, Cohen SM, Hardisty JF, Atillasoy E, Hermanowski-Vosatka A, Kuffner E, Wikoff D, Chappell GA, Bandara SB, Deore M, Pitchaiyan SK, Eichenbaum G. Assessment of the biochemical pathways for acetaminophen toxicity: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 120:104859. [PMID: 33388367 DOI: 10.1016/j.yrtph.2020.104859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- University of Kansas Medical Center, Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, USA
| | | | | | | | - Samuel M Cohen
- University of Nebraska Medical Center, Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, Omaha, NE, USA
| | - Jerry F Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | | | | | - Edwin Kuffner
- Johnson & Johnson Consumer Health, Fort Washington, PA, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
17
|
Maio N, Jain A, Rouault TA. Mammalian iron-sulfur cluster biogenesis: Recent insights into the roles of frataxin, acyl carrier protein and ATPase-mediated transfer to recipient proteins. Curr Opin Chem Biol 2020; 55:34-44. [PMID: 31918395 PMCID: PMC7237328 DOI: 10.1016/j.cbpa.2019.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022]
Abstract
The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron-sulfur (Fe-S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe-S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
19
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Guo R, Ma Y, Tang Y, Xie P, Wang Q, Lin W. A novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in living cell, zebra fishes and living mice. Talanta 2019; 204:868-874. [DOI: 10.1016/j.talanta.2019.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
|
21
|
Audano M, Pedretti S, Crestani M, Caruso D, De Fabiani E, Mitro N. Mitochondrial dysfunction increases fatty acid β-oxidation and translates into impaired neuroblast maturation. FEBS Lett 2019; 593:3173-3189. [PMID: 31432511 DOI: 10.1002/1873-3468.13584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
Abstract
The metabolic transition from anaerobic glycolysis and fatty acid β-oxidation to glycolysis coupled to oxidative phosphorylation is a key process for the transition of quiescent neural stem cells to proliferative neural progenitor cells. However, a full characterization of the metabolic shift and the involvement of mitochondria during the last step of neurogenesis, from neuroblasts to neuron maturation, is still elusive. Here, we describe a model of neuroblasts, Neuro2a cells, with impaired differentiation capacity due to mitochondrial dysfunction. Using a detailed biochemical characterization consisting of steady-state metabolomics and metabolic flux analysis, we find increased fatty acid β-oxidation as a peculiar feature of neuroblasts with altered mitochondria. The consequent metabolic switch favors neuroblast proliferation at the expense of neuron maturation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
22
|
Zurkirchen L, Varum S, Giger S, Klug A, Häusel J, Bossart R, Zemke M, Cantù C, Atak ZK, Zamboni N, Basler K, Sommer L. Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nat Commun 2019; 10:2192. [PMID: 31097699 PMCID: PMC6522535 DOI: 10.1038/s41467-019-09823-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Yin Yang 1 (YY1) plays an important role in human disease. It is often overexpressed in cancers and mutations can lead to a congenital haploinsufficiency syndrome characterized by craniofacial dysmorphisms and neurological dysfunctions, consistent with a role in brain development. Here, we show that Yy1 controls murine cerebral cortex development in a stage-dependent manner. By regulating a wide range of metabolic pathways and protein translation, Yy1 maintains proliferation and survival of neural progenitor cells (NPCs) at early stages of brain development. Despite its constitutive expression, however, the dependence on Yy1 declines over the course of corticogenesis. This is associated with decreasing importance of processes controlled by Yy1 during development, as reflected by diminished protein synthesis rates at later developmental stages. Thus, our study unravels a novel role for Yy1 as a stage-dependent regulator of brain development and shows that biosynthetic demands of NPCs dynamically change throughout development. The transcription factor Yin Yang 1 (YY1) plays an important role in human disease, yet little is known about its role in brain development. This study shows that YY1 controls cerebral cortex development by maintaining proliferation and survival of neural progenitor cells via transcriptional regulation of genes involved in metabolism and protein translation.
Collapse
Affiliation(s)
- Luis Zurkirchen
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sandra Varum
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sonja Giger
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Annika Klug
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Jessica Häusel
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Raphaël Bossart
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Martina Zemke
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland.,Wallenberg Centre for Molecular Medicine (WCMM), Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, 58183, Sweden
| | - Zeynep Kalender Atak
- Laboratory of Computational Biology, KU Leuven Center for Human Genetics, Leuven, 3000, Belgium
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
Chacko BK, Smith MR, Johnson MS, Benavides G, Culp ML, Pilli J, Shiva S, Uppal K, Go YM, Jones DP, Darley-Usmar VM. Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. Redox Biol 2019; 22:101165. [PMID: 30877854 PMCID: PMC6436140 DOI: 10.1016/j.redox.2019.101165] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondria possess reserve bioenergetic capacity, supporting protection and resilience in the face of disease. Approaches are limited to understand factors that impact mitochondrial functional reserve in humans. We applied the mitochondrial stress test (MST) to platelets from healthy subjects and found correlations between energetic parameters and mitochondrial function. These parameters were not correlated with mitochondrial complex I-IV activities, however, suggesting that other factors affect mitochondrial bioenergetics and metabolism. Platelets from African American patients with sickle cell disease also differed from controls, further showing that other factors impact mitochondrial bioenergetics and metabolism. To test for correlations of platelet metabolites with energetic parameters, we performed an integrated analysis of metabolomics and MST parameters. Subsets of metabolites, including fatty acids and xenobiotics correlated with mitochondrial parameters. The results establish platelets as a platform to integrate bioenergetics and metabolism for analysis of mitochondrial function in precision medicine.
Collapse
Affiliation(s)
- Balu K Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Matthew R Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Gloria Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Matilda L Culp
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK
| | - Jyotsna Pilli
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, UK.
| |
Collapse
|
24
|
Kim KS, Maio N, Singh A, Rouault TA. Cytosolic HSC20 integrates de novo iron-sulfur cluster biogenesis with the CIAO1-mediated transfer to recipients. Hum Mol Genet 2019; 27:837-852. [PMID: 29309586 DOI: 10.1093/hmg/ddy004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors in hundreds of proteins involved in multiple cellular processes, including mitochondrial respiration, the maintenance of genome stability, ribosome biogenesis and translation. Fe-S cluster biogenesis is performed by multiple enzymes that are highly conserved throughout evolution, and mutations in numerous biogenesis factors are now recognized to cause a wide range of previously uncategorized rare human diseases. Recently, a complex formed of components of the cytoplasmic Fe-S cluster assembly (CIA) machinery, consisting of CIAO1, FAM96B and MMS19, was found to deliver Fe-S clusters to a subset of proteins involved in DNA metabolism, but it was unclear how this complex acquired its fully synthesized Fe-S clusters, because Fe-S clusters have been alleged to be assembled de novo solely in the mitochondrial matrix. Here, we investigated the potential role of the human cochaperone HSC20 in cytosolic Fe-S assembly and found that HSC20 assists Fe-S cluster delivery to cytosolic and nuclear Fe-S proteins. Cytosolic HSC20 (C-HSC20) mediated complex formation between components of the cytosolic Fe-S biogenesis pathway (ISC), including the primary scaffold, ISCU1, and the cysteine desulfurase, NFS1, and the CIA targeting complex, consisting of CIAO1, FAM96B and MMS19, to facilitate Fe-S cluster insertion into cytoplasmic and nuclear Fe-S recipients. Thus, C-HSC20 integrates initial Fe-S biosynthesis with the transfer activities of the CIA targeting system. Our studies demonstrate that a novel cytosolic pathway functions in parallel to the mitochondrial ISC to perform de novo Fe-S biogenesis, and to escort Fe-S clusters to cytoplasmic and nuclear proteins.
Collapse
Affiliation(s)
- Ki Soon Kim
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Zhao X, Song X, Bai X, Tan Z, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. microRNA-222 Attenuates Mitochondrial Dysfunction During Transmissible Gastroenteritis Virus Infection. Mol Cell Proteomics 2019; 18:51-64. [PMID: 30257878 PMCID: PMC6317483 DOI: 10.1074/mcp.ra118.000808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiangjun Song
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoyuan Bai
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhanhang Tan
- §Huyi District Center for Animal Disease Control and Prevention, Xi'an, Shaanxi 710300, P.R. China
| | - Xuelian Ma
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianxiong Guo
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhichao Zhang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yong Huang
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- From the ‡College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China;.
| |
Collapse
|
26
|
Abstract
BACKGROUND Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. RESULTS We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. CONCLUSIONS We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells.
Collapse
Affiliation(s)
- Elisabeth Yaneske
- Department of Computer Science and Information Systems, Teesside University, Borough Road, Middlesbrough, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Borough Road, Middlesbrough, UK
| |
Collapse
|
27
|
Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1068-1078. [PMID: 30982525 DOI: 10.1016/j.bbamcr.2018.10.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
The versatility of mitochondrial metabolism and its fine adjustments to specific physiological or pathological conditions regulate fundamental cell pathways, ranging from proliferation to apoptosis. In particular, Ca2+ signalling has emerged as a key player exploited by mitochondria to tune their activity according with cell demand. The functional interaction between mitochondria and endoplasmic reticulum (ER) deeply impacts on the correct mitochondrial Ca2+ signal, thus modulating cell bioenergetics and functionality. Indeed, Ca2+ released by the ER is taken up by mitochondria where, both in the intermembrane space and in the matrix, it regulates the activity of transporters, enzymes and proteins involved in organelles' metabolism. In this review, we will briefly summarize Ca2+-dependent mechanisms involved in the regulation of mitochondrial activity. Moreover, we will discuss some recent reports, in which alterations in mitochondrial Ca2+ signalling have been associated with specific pathological conditions, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Alice Rossi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; Neuroscience Institute - Italian National Research Council (CNR), 35131 Padova, Italy.
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
28
|
Abrantes ABDP, Dias GC, Souza-Pinto NC, Baptista MS. p53-Dependent and p53-Independent Responses of Cells Challenged by Photosensitization. Photochem Photobiol 2018; 95:355-363. [PMID: 30240018 DOI: 10.1111/php.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 01/22/2023]
Abstract
The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy-associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9-dimethyl methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light-induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub-G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy-associated cell death and S-phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53-related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity.
Collapse
Affiliation(s)
- Aline B de P Abrantes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo C Dias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Baradan R, Hollander JM, Das S. Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Can J Physiol Pharmacol 2017; 95:1156-1162. [PMID: 28467860 DOI: 10.1139/cjpp-2016-0580] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 2 decades, mi(cro)RNAs have emerged as one of the key regulators of metabolic homeostasis. Most of the studies have highlighted that, in the cytoplasm, miRNAs directly bind to the 3'-UTR (untranslated region) of a mRNA. Conventional RNA-induced silencing complex (RISC) formation results in the post-transcriptional inhibition. This process is known to contribute to the development of metabolic diseases, including diabetes mellitus. Recent advancements with small RNA detection technologies have enabled us to identify miRNAs in the mitochondrial compartment of the cells. We have termed these miRNAs, which translocate into the mitochondria as mitochondrial miRNA, MitomiR. It has been demonstrated that MitomiRs can regulate gene expression, with some evidence even suggesting that, after translocation, MitomiRs can bind to the 3'-end of a mitochondrial gene, altering its regulation. Our main focus in this review is to highlight the potential role of MitomiR in the pathogenesis of metabolic disorders such as diabetes mellitus.
Collapse
Affiliation(s)
- Rohini Baradan
- a Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA.,b School of Life Sciences, B.S. Abdur Rahman University, Tamilnadu, India
| | - John M Hollander
- c Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Samarjit Das
- a Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Ivanova H, Kerkhofs M, La Rovere RM, Bultynck G. Endoplasmic Reticulum-Mitochondrial Ca 2+ Fluxes Underlying Cancer Cell Survival. Front Oncol 2017; 7:70. [PMID: 28516062 PMCID: PMC5413502 DOI: 10.3389/fonc.2017.00070] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 11/17/2022] Open
Abstract
Calcium ions (Ca2+) are crucial, ubiquitous, intracellular second messengers required for functional mitochondrial metabolism during uncontrolled proliferation of cancer cells. The mitochondria and the endoplasmic reticulum (ER) are connected via “mitochondria-associated ER membranes” (MAMs) where ER–mitochondria Ca2+ transfer occurs, impacting the mitochondrial biology related to several aspects of cellular survival, autophagy, metabolism, cell death sensitivity, and metastasis, all cancer hallmarks. Cancer cells appear addicted to these constitutive ER–mitochondrial Ca2+ fluxes for their survival, since they drive the tricarboxylic acid cycle and the production of mitochondrial substrates needed for nucleoside synthesis and proper cell cycle progression. In addition to this, the mitochondrial Ca2+ uniporter and mitochondrial Ca2+ have been linked to hypoxia-inducible factor 1α signaling, enabling metastasis and invasion processes, but they can also contribute to cellular senescence induced by oncogenes and replication. Finally, proper ER–mitochondrial Ca2+ transfer seems to be a key event in the cell death response of cancer cells exposed to chemotherapeutics. In this review, we discuss the emerging role of ER–mitochondrial Ca2+ fluxes underlying these cancer-related features.
Collapse
Affiliation(s)
- Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Martijn Kerkhofs
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5080128. [PMID: 28265337 PMCID: PMC5317109 DOI: 10.1155/2017/5080128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation, oxidative phosphorylation is essential at all stages of differentiation.
Collapse
|
32
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
33
|
Shafique E, Torina A, Reichert K, Colantuono B, Nur N, Zeeshan K, Ravichandran V, Liu Y, Feng J, Zeeshan K, Benjamin LE, Irani K, Harrington EO, Sellke FW, Abid MR. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium. Cardiovasc Res 2017; 113:234-246. [PMID: 28088753 DOI: 10.1093/cvr/cvw249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/25/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS There are conflicting reports on the role of reactive oxygen species (ROS) i.e. beneficial vs. harmful, in vascular endothelium. Here, we aim to examine whether duration of exposure to ROS and/or subcellular ROS levels are responsible for the apparently paradoxical effects of oxidants on endothelium. METHODS AND RESULTS We have recently generated binary (Tet-ON/OFF) conditional transgenic mice (Tet-Nox2:VE-Cad-tTA) that can induce 1.8 ± 0.42-fold increase in NADPH oxidase (NOX)-derived ROS specifically in vascular endothelium upon withdrawal of tetracycline from the drinking water. Animals were divided in two groups: one exposed to high endogenous ROS levels for 8 weeks (short-term) and the other for 20 weeks (long-term). Using endothelial cells (EC) isolated from mouse hearts (MHEC), we demonstrate that both short-term and long-term increase in NOX-ROS induced AMPK-mediated activation of eNOS. Interestingly, although endothelium-dependent nitric oxide (NO)-mediated coronary vasodilation was significantly increased after short-term increase in NOX-ROS, coronary vasodilation was drastically reduced after long-term increase in ROS. We also show that short-term ROS increase induced proliferation in EC and angiogenic sprouting in the aorta. In contrast, long-term increase in cytosolic ROS resulted in nitrotyrosine-mediated inactivation of mitochondrial (mito) antioxidant MnSOD, increase in mito-ROS, loss of mitochondrial membrane potential (Δψm), decreased EC proliferation and angiogenesis. CONCLUSION The findings suggest that NOX-derived ROS results in increased mito-ROS. Whereas short-term increase in mito-ROS was counteracted by MnSOD, long-term increase in ROS resulted in nitrotyrosine-mediated inactivation of MnSOD, leading to unchecked increase in mito-ROS and loss of Δψm followed by inhibition of endothelial function and proliferation.
Collapse
Affiliation(s)
- Ehtesham Shafique
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Anali Torina
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Karla Reichert
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Bonnie Colantuono
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Nasifa Nur
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Vani Ravichandran
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | - Yuhong Liu
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Jun Feng
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Khawaja Zeeshan
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA
| | | | - Kaikobad Irani
- University of Iowa Carver School of Medicine, Iowa, IA, USA
| | - Elizabeth O Harrington
- Providence VA Medical Center, Providence, RI, USA.,Brown University, Providence, RI, USA
| | - Frank W Sellke
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA.,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA
| | - Md Ruhul Abid
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, 1 Hoppin St, Providence, RI 02903, USA; .,Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903, USA.,Brown University, Providence, RI, USA
| |
Collapse
|
34
|
Maynard S, Hejl AM, Dinh TST, Keijzers G, Hansen ÅM, Desler C, Moreno-Villanueva M, Bürkle A, Rasmussen LJ, Waldemar G, Bohr VA. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients. Aging (Albany NY) 2016; 7:793-815. [PMID: 26539816 PMCID: PMC4637207 DOI: 10.18632/aging.100810] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. METHODS PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate DNA repair efficiency). RESULTS In the PBMCs of AD patients, we found reduced basal mitochondrial oxygen consumption, reduced proton leak, higher dATP level, and lower AP endonuclease 1 activity, depending on adjustments for gender and/or age. CONCLUSIONS This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD.
Collapse
Affiliation(s)
- Scott Maynard
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thuan-Son T Dinh
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Åse M Hansen
- Department of Public Health, University of Copenhagen, 1014 Copenhagen, Denmark.,The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Lene J Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| |
Collapse
|
35
|
Bao XR, Ong SE, Goldberger O, Peng J, Sharma R, Thompson DA, Vafai SB, Cox AG, Marutani E, Ichinose F, Goessling W, Regev A, Carr SA, Clish CB, Mootha VK. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 2016; 5. [PMID: 27307216 PMCID: PMC4911214 DOI: 10.7554/elife.10575] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/04/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.10575.001 Mitochondria are found within virtually all of our body’s cells and are best known as their power plants. Damaged mitochondria cause many diseases in humans – from rare, inherited metabolic disorders that cause symptoms including muscle weakness and developmental problems, to age-related diseases such as diabetes and Parkinson’s disease. How does mitochondrial damage lead to such a variety of symptoms and conditions? To answer this question, researchers must understand how cells respond to and compensate for such damage. To mimic mitochondrial failure, Bao et al. reduced the amount of DNA in the mitochondria of human cells and observed that this caused the cells to accumulate more of an amino acid called serine. Further investigation showed that this accumulation comes in part from cells producing more serine, and that a protein called Activating Transcription Factor 4 is responsible for increasing the expression of the genes needed to produce serine in the cells. Bao et al. also found that damaged mitochondria are less able to consume serine to produce a compound called formate, which is a precursor for DNA building blocks. If cells cannot acquire enough extra serine to compensate for this inefficiency, they cannot produce some of the building blocks required to make DNA and other critical compounds in the cell. Supplementing the cells with formate or the DNA building blocks enabled the cells to recover, which suggests that formate supplements may help to treat some mitochondrial disorders. At a higher level, these results suggest that the mitochondrion’s role as a major chemical factory in the cell, and not just as the power plant, may also contribute to disease when the mitochondria are broken. Further work is now needed to investigate how cells know to turn on Activating Transcription Factor 4 when their mitochondria are damaged. It also remains to be discovered whether this reduces or exacerbates the symptoms of mitochondrial disease. DOI:http://dx.doi.org/10.7554/eLife.10575.002
Collapse
Affiliation(s)
- Xiaoyan Robert Bao
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shao-En Ong
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Olga Goldberger
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Jun Peng
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Rohit Sharma
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States
| | - Dawn A Thompson
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Scott B Vafai
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew G Cox
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Masaschusetts General Hospital, Boston, United States
| | - Wolfram Goessling
- Broad Institute of MIT and Harvard, Cambridge, United States.,Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vamsi K Mootha
- Department of Molecular Biology, Howard Hughes Medical Institute , Massachusetts General Hospital, Boston, United States.,Department of Systems Biology, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
36
|
Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, Ridky TW, Foskett JK. Selective Vulnerability of Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. Cell Rep 2016; 14:2313-24. [PMID: 26947070 PMCID: PMC4794382 DOI: 10.1016/j.celrep.2016.02.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
In the absence of low-level ER-to-mitochondrial Ca(2+) transfer, ATP levels fall, and AMPK-dependent, mTOR-independent autophagy is induced as an essential survival mechanism in many cell types. Here, we demonstrate that tumorigenic cancer cell lines, transformed primary human fibroblasts, and tumors in vivo respond similarly but that autophagy is insufficient for survival, and cancer cells die while their normal counterparts are spared. Cancer cell death is due to compromised bioenergetics that can be rescued with metabolic substrates or nucleotides and caused by necrosis associated with mitotic catastrophe during their proliferation. Our findings reveal an unexpected dependency on constitutive Ca(2+) transfer to mitochondria for viability of tumorigenic cells and suggest that mitochondrial Ca(2+) addiction is a feature of cancer cells.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetylcysteine/pharmacology
- Adenosine Triphosphate/metabolism
- Antineoplastic Agents/pharmacology
- Autophagy/drug effects
- Blotting, Western
- Calcium/metabolism
- Cell Line, Tumor
- Endoplasmic Reticulum/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Macrocyclic Compounds/pharmacology
- Microscopy, Video
- Mitochondria/metabolism
- Oxazoles/pharmacology
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile.
| | - Marioly Müller
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrew McNeal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alenka Lovy
- Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Fabian Jaňa
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Felix Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Natalia Smith
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Jordi Molgó
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, Bâtiment 152, Courrier Number 24, 91191 Gif-sur-Yvette, France
| | - J Alan Diehl
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Mitochondrial emitted electromagnetic signals mediate retrograde signaling. Med Hypotheses 2015; 85:810-8. [DOI: 10.1016/j.mehy.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
|
38
|
Gustafsson Sheppard N, Jarl L, Mahadessian D, Strittmatter L, Schmidt A, Madhusudan N, Tegnér J, Lundberg EK, Asplund A, Jain M, Nilsson R. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci Rep 2015; 5:15029. [PMID: 26461067 PMCID: PMC4602236 DOI: 10.1038/srep15029] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.
Collapse
Affiliation(s)
- Nina Gustafsson Sheppard
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lisa Jarl
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Mahadessian
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Laura Strittmatter
- Department of Molecular Biology and the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Angelika Schmidt
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nikhil Madhusudan
- Department of Molecular Biology and the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jesper Tegnér
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma K Lundberg
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohit Jain
- Department of Medicine, Institute for Metabolomics Medicine, University of California, San Diego, USA
| | - Roland Nilsson
- Unit of Computational Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Ma X, Gao L, Karamanlidis G, Gao P, Lee CF, Garcia-Menendez L, Tian R, Tan K. Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks. PLoS Comput Biol 2015; 11:e1004332. [PMID: 26083688 PMCID: PMC4471235 DOI: 10.1371/journal.pcbi.1004332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/12/2015] [Indexed: 02/02/2023] Open
Abstract
Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules). We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.
Collapse
Affiliation(s)
- Xiaoke Ma
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Long Gao
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Georgios Karamanlidis
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Peng Gao
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Chi Fung Lee
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lorena Garcia-Menendez
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
41
|
Fasullo M, Endres L. Nucleotide salvage deficiencies, DNA damage and neurodegeneration. Int J Mol Sci 2015; 16:9431-49. [PMID: 25923076 PMCID: PMC4463597 DOI: 10.3390/ijms16059431] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
Abstract
Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.
Collapse
Affiliation(s)
- Michael Fasullo
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| | - Lauren Endres
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| |
Collapse
|
42
|
Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One 2014; 9:e110685. [PMID: 25333787 PMCID: PMC4198247 DOI: 10.1371/journal.pone.0110685] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell's energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Maynard S, Keijzers G, Gram M, Desler C, Bendix L, Budtz-Jørgensen E, Molbo D, Croteau DL, Osler M, Stevnsner T, Rasmussen LJ, Dela F, Avlund K, Bohr VA. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells. Aging (Albany NY) 2014; 5:850-64. [PMID: 24304678 PMCID: PMC3868727 DOI: 10.18632/aging.100618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality. Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters. However, vitality score was inversely associated with cellular ROS production and cellular deoxythymidine triphosphate (dTTP) levels and positively associated with deoxycytidine triphosphate (dCTP) levels. We conclude that self-reported persistent low vitality is not associated with specific aspects of mitochondrial oxidative phosphorylation capacity in PBMCs, but may have other underlying cellular dysfunctions that contribute to dNTP imbalance and altered ROS production.
Collapse
Affiliation(s)
- Scott Maynard
- Center for Healthy Aging at the University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The average human life span has markedly increased in modern society largely attributed to advances in medical and therapeutic sciences that have successfully reduced important health risks. However, advanced age results in numerous alterations to cellular and subcellular components that can impact the overall health and function of an individual. Not surprisingly, advanced age is a major risk factor for the development of heart disease in which elderly populations observe increased morbidity and mortality. Even healthy individuals that appear to have normal heart function under resting conditions, actually have an increased susceptibility and vulnerability to stress. This is confounded by the impact that stress and disease can have over time to both the heart and vessels. Although, there is a rapidly growing body of literature investigating the effects of aging on the heart and how age-related alterations affect cardiac function, the biology of aging and underlying mechanisms remain unclear. In this review, we summarize effects of aging on the heart and discuss potential theories of cellular aging with special emphasis on mitochondrial dysfunction.
Collapse
|
45
|
Desler C, Rasmussen LJ. Mitochondria in Biology and Medicine. Mitochondrion 2012; 12:472-6. [DOI: 10.1016/j.mito.2012.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/25/2012] [Indexed: 01/22/2023]
|
46
|
Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J Aging Res 2011; 2011:407536. [PMID: 21584235 PMCID: PMC3092560 DOI: 10.4061/2011/407536] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production of ribonucleotides and deoxyribonucleotides.
Collapse
Affiliation(s)
- Claus Desler
- Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|