1
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
2
|
Williamson DL, Naylor CN, Nagy G. Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies. Anal Chem 2024. [PMID: 39137259 DOI: 10.1021/acs.analchem.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gangliosides, a diverse class of glycosphingolipids, are highly abundant in neural tissue and have been implicated in numerous aging-related diseases. Their characterization with methods such as liquid chromatography-tandem mass spectrometry is often precluded by their structural complexity, isomeric heterogeneity, and lack of commercially available authentic standards. In this work, we coupled high-resolution cyclic ion mobility spectrometry with multiple collision-induced dissociation-based tandem mass spectrometry strategies to sequence the sialic acid positions in various ganglioside isomers. Initially, as a proof-of-concept demonstration, we were able to characterize the sialic acid positions in several GD1 and GT1 species. From there, we extended our approach to identify the location of N-glycolylneuraminic acid (NeuGc) residues in previously uncharacterized GD1 and GQ1 isomers. Our results highlight the potential of this presented methodology for the de novo characterization of gangliosides within complex biological matrices without the need for authentic standards.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cameron N Naylor
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kundu S, Guo Z, Fanucci GE. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. APPLIED MAGNETIC RESONANCE 2024; 55:317-333. [PMID: 38469359 PMCID: PMC10927023 DOI: 10.1007/s00723-023-01624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 03/13/2024]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Trang T Tran
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Mingwei Zhou
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Sayan Kundu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kunda S, Guo Z, Fanucci G. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. RESEARCH SQUARE 2023:rs.3.rs-3039983. [PMID: 37398188 PMCID: PMC10312935 DOI: 10.21203/rs.3.rs-3039983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
|
6
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Hsieh YC, Negri J, He A, Pearse RV, Liu L, Duong DM, Chibnik LB, Bennett DA, Seyfried NT, Young-Pearse TL. Elevated ganglioside GM2 activator (GM2A) in human brain tissue reduces neurite integrity and spontaneous neuronal activity. Mol Neurodegener 2022; 17:61. [PMID: 36131294 PMCID: PMC9494921 DOI: 10.1186/s13024-022-00558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) affects millions globally, but therapy development is lagging. New experimental systems that monitor neuronal functions in conditions approximating the AD brain may be beneficial for identifying new therapeutic strategies. METHODS We expose cultured neurons to aqueous-soluble human brain extract from 43 individuals across a spectrum of AD pathology. Multi-electrode arrays (MEAs) and live-cell imaging were used to assess neuronal firing and neurite integrity (NI), respectively, following treatments of rat cortical neurons (MEA) and human iPSC-derived neurons (iN) with human brain extracts. RESULTS We observe associations between spontaneous activity and Aβ42:40 levels, between neurite integrity and oligomeric Aβ, and between neurite integrity and tau levels present in the brain extracts. However, these associations with Aβ and tau do not fully account for the effects observed. Proteomic profiling of the brain extracts revealed additional candidates correlated with neuronal structure and activity. Neurotoxicity in MEA and NI assays was associated with proteins implicated in lysosomal storage disorders, while neuroprotection was associated with proteins of the WAVE regulatory complex controlling actin cytoskeleton dynamics. Elevated ganglioside GM2 activator (GM2A) associates with reductions in both NI and MEA activity, and cell-derived GM2A alone is sufficient to induce a loss of neurite integrity and a reduction in neuronal firing. CONCLUSIONS The techniques and data herein introduce a system for modeling neuronal vulnerability in response to factors in the human brain and provide insights into proteins potentially contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
| | - Joseph Negri
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
| | - Amy He
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
| | - Richard V. Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, GA 30322 USA
| | - Lori B. Chibnik
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115 USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 S. Paulina St, Chicago, IL 60612 USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322 USA
| | - Tracy L. Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA 02115 USA
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| |
Collapse
|
8
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
9
|
Huang F, Bailey LS, Gao T, Jiang W, Yu L, Bennett DA, Zhao J, Basso KB, Guo Z. Analysis and Comparison of Mouse and Human Brain Gangliosides via Two-Stage Matching of MS/MS Spectra. ACS OMEGA 2022; 7:6403-6411. [PMID: 35224401 PMCID: PMC8867566 DOI: 10.1021/acsomega.1c07070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 05/13/2023]
Abstract
Glycosphingolipids (GSLs), including gangliosides, are essential components of the cell membrane. Because of their vital biological functions, a facile method for the analysis and comparison of GSLs in biological issues is desired. To this end, a new method for GSL analysis was developed based on two-stage matching of the carbohydrate and glycolipid product ions of experimental and reference MS/MS spectra of GSLs. The applicability of this method to the analysis of gangliosides in biological tissues was verified using human plasma and mouse brains spiked with standards. The method was then used to characterize endogenous gangliosides in mouse and human brains. It was shown that each endogenous ganglioside species had varied lipid forms and that mouse and human brains had different compositions of ganglioside species and lipid forms. Moreover, a 36-carbon ceramide is found to represent the major lipid form for mouse brain gangliosides, while the major lipid form for most human brain gangliosides is a 38-carbon ceramide. This study has verified that the two-stage MS/MS spectral matching method could be used to study gangliosides or GSLs and their lipid forms in complex biological samples, thereby having a broad application.
Collapse
Affiliation(s)
- Fanran Huang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Laura S. Bailey
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tianqi Gao
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wenjie Jiang
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lei Yu
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - David A. Bennett
- Rush
Alzheimer’s Disease Center, Rush
University Medical Center, Chicago, Illinois 60612, United States
| | - Jinying Zhao
- Department
of Epidemiology, University of Florida, Gainesville, Florida 32611, United States
| | - Kari B. Basso
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Sgambati E, Tani A, Leri M, Delfino G, Zecchi-Orlandini S, Bucciantini M, Nosi D. Correlation between Sialylation Status and Cell Susceptibility to Amyloid Toxicity. Cells 2022; 11:cells11040601. [PMID: 35203252 PMCID: PMC8870280 DOI: 10.3390/cells11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
The interaction between the cell membrane and misfolded protein species plays a crucial role in the development of neurodegeneration. This study was designed to clarify the relationship between plasma membrane composition in terms of the differently linked sialic acid (Sia) content and cell susceptibility to toxic and misfolded Aβ-42 peptides. The sialylation status in different cell lines was investigated by lectin histochemistry and confocal immunofluorescence and then correlated with the different propensities to bind amyloid fibrils and with the relative cell susceptibility to amyloid damage. This study reveals that expressions of Sias α2,3 and α2,6 linked to galactose/N-acetyl-galactosamine, and PolySia are positively correlated with Aβ-42-induced cell toxicity. PolySia shows an early strong interaction with amyloid fibrils, favoring their binding to GM1 ganglioside containing α2,3 galactose-linked Sia and a loss of cell viability. Our findings demonstrate that cell lines with a prevailing plastic neuron-like phenotype and high monoSia and PolySia contents are highly susceptible to amyloid Aβ-42 toxicity. This toxicity may involve a change in neuron metabolism and promote a compensative/protective increase in PolySia, which, in turn, could favor amyloid binding to GM1, thus exacerbating cell dysmetabolism and further amyloid aggregation.
Collapse
Affiliation(s)
- Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Giovanni Delfino
- Department of Biology (BIO), University of Florence, Via Giorgio La Pira 4, 50121 Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Correspondence:
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| |
Collapse
|
11
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
12
|
Bailey LS, Huang F, Gao T, Zhao J, Basso KB, Guo Z. Characterization of Glycosphingolipids and Their Diverse Lipid Forms through Two-Stage Matching of LC-MS/MS Spectra. Anal Chem 2021; 93:3154-3162. [PMID: 33534538 DOI: 10.1021/acs.analchem.0c04542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) play a key role in various biological and pathological events. Thus, determination of the complete GSL compositions in human tissues is essential for comparative and functional studies of GSLs. In this work, a new strategy was developed for GSL characterization and glycolipidomics analysis based on two-stage matching of experimental and reference MS/MS spectra. In the first stage, carbohydrate fragments, which contain only glycans and thus are conserved within a GSL species, are directly matched to yield a species identification. In the second stage, glycolipid fragments from the matched GSL species, which contain both the lipid and glycans and thus shift due to lipid structural changes, are treated according to lipid rule-based matching to characterize the lipid compositions. This new strategy uses the whole spectrum for GSL characterization. Furthermore, simple databases containing only a single lipid form per GSL species can be utilized to identify multiple GSL lipid forms. It is expected that this method will help accelerate glycolipidomics analysis and disclose new and diverse lipid forms of GSLs.
Collapse
|
13
|
Rohokale RS, Li Q, Guo Z. A Diversity-Oriented Strategy for Chemical Synthesis of Glycosphingolipids: Synthesis of Glycosphingolipid LcGg4 and Its Analogues and Derivatives. J Org Chem 2021; 86:1633-1648. [PMID: 33395290 DOI: 10.1021/acs.joc.0c02490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A diversity-oriented strategy was developed for the synthesis of glycosphingolipids (GSLs). This strategy was highlighted by using a simple lactoside containing the core structures of GSL glycan and lipid as the universal starting material to obtain different synthetic targets upon stepwise elongation of the glycan via chemical glycosylations and on-site remodeling of the lipid via chemoselective cross-metathesis and N-acylation. The strategy was verified with the synthesis of a lacto-ganglio GSL, LcGg4, which is a biomarker of undifferentiated malignant myeloid cells, and a series of its analogues or derivatives carrying different sugar chains and unique functionalities or molecular labels. This synthetic strategy should be widely applicable and, therefore, be utilized to rapidly access various GSLs and related derivatives by using different donors for glycosylations and different substrates for lipid remodeling following each glycosylation.
Collapse
Affiliation(s)
- Rajendra S Rohokale
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
14
|
Kim BH, Choi YH, Yang JJ, Kim S, Nho K, Lee JM. Identification of Novel Genes Associated with Cortical Thickness in Alzheimer’s Disease: Systems Biology Approach to Neuroimaging Endophenotype. J Alzheimers Dis 2020; 75:531-545. [DOI: 10.3233/jad-191175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center of Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
15
|
Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer's disease mouse model, and causes reduction of amyloid precursor protein. Sci Rep 2019; 9:8512. [PMID: 31186474 PMCID: PMC6560179 DOI: 10.1038/s41598-019-44739-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays crucial roles in memory impairments including Alzheimer’s disease (AD). Previous studies have reported that tetrasialoganglioside GQ1b is involved in long-term potentiation and cognitive functions as well as BDNF expression. However, in vitro and in vivo functions of GQ1b against AD has not investigated yet. Consequently, treatment of oligomeric Aβ followed by GQ1b significantly restores Aβ1–42-induced cell death through BDNF up-regulation in primary cortical neurons. Bilateral infusion of GQ1b into the hippocampus ameliorates cognitive deficits in the triple-transgenic AD mouse model (3xTg-AD). GQ1b-infused 3xTg-AD mice had substantially increased BDNF levels compared with artificial cerebrospinal fluid (aCSF)-treated 3xTg-AD mice. Interestingly, we also found that GQ1b administration into hippocampus of 3xTg-AD mice reduces Aβ plaque deposition and tau phosphorylation, which correlate with APP protein reduction and phospho-GSK3β level increase, respectively. These findings demonstrate that the tetrasialoganglioside GQ1b may contribute to a potential strategy of AD treatment.
Collapse
|
16
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
17
|
Ayciriex S, Djelti F, Alves S, Regazzetti A, Gaudin M, Varin J, Langui D, Bièche I, Hudry E, Dargère D, Aubourg P, Auzeil N, Laprévote O, Cartier N. Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis. Front Mol Neurosci 2017; 10:211. [PMID: 28744197 PMCID: PMC5504187 DOI: 10.3389/fnmol.2017.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/14/2017] [Indexed: 11/13/2022] Open
Abstract
Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD). However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Sophie Ayciriex
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France
| | - Fathia Djelti
- Institut National de la Santé et de la Recherche Médicale U1169, CHU Bicêtre Paris SudLe Kremlin-Bicêtre, France.,CEA Fontenay aux RosesFontenay aux Roses, France
| | - Sandro Alves
- Institut National de la Santé et de la Recherche Médicale U1169, CHU Bicêtre Paris SudLe Kremlin-Bicêtre, France.,CEA Fontenay aux RosesFontenay aux Roses, France
| | - Anne Regazzetti
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France
| | - Mathieu Gaudin
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France.,Division Métabolisme, Technologie ServierOrléans, France
| | - Jennifer Varin
- Génétique, Physiopathologie et Approches Thérapeutiques des Maladies Héréditaires du Système Nerveux, EA7331, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesSorbonne Paris Cité, Paris, France
| | - Dominique Langui
- Plate-forme d'Imagerie Cellulaire Pitié Salpêtrière, Hôpital Pitié-SalpêtrièreParis, France
| | - Ivan Bièche
- Génétique, Physiopathologie et Approches Thérapeutiques des Maladies Héréditaires du Système Nerveux, EA7331, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesSorbonne Paris Cité, Paris, France
| | - Eloise Hudry
- Alzheimer's Disease Research Laboratory, Department of Neurology, Massachusetts General HospitalCharlestown, MA, United States
| | - Delphine Dargère
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France
| | - Patrick Aubourg
- Institut National de la Santé et de la Recherche Médicale U1169, CHU Bicêtre Paris SudLe Kremlin-Bicêtre, France.,CEA Fontenay aux RosesFontenay aux Roses, France
| | - Nicolas Auzeil
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France
| | - Olivier Laprévote
- UMR Centre National de la Recherche Scientifique 8638 COMETE, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris DescartesParis, France.,Service de Toxicologie Biologique, Hôpital LariboisièreParis, France
| | - Nathalie Cartier
- Institut National de la Santé et de la Recherche Médicale U1169, CHU Bicêtre Paris SudLe Kremlin-Bicêtre, France.,CEA Fontenay aux RosesFontenay aux Roses, France
| |
Collapse
|
18
|
Kaya I, Brinet D, Michno W, Syvänen S, Sehlin D, Zetterberg H, Blennow K, Hanrieder J. Delineating Amyloid Plaque Associated Neuronal Sphingolipids in Transgenic Alzheimer's Disease Mice (tgArcSwe) Using MALDI Imaging Mass Spectrometry. ACS Chem Neurosci 2017; 8:347-355. [PMID: 27984697 PMCID: PMC5314428 DOI: 10.1021/acschemneuro.6b00391] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
![]()
The major pathological
hallmarks of Alzheimer’s disease
(AD) are the progressive aggregation and accumulation of beta-amyloid
(Aβ) and hyperphosphorylated tau protein into neurotoxic deposits.
Aβ aggregation has been suggested as the critical early inducer,
driving the disease progression. However, the factors that promote
neurotoxic Aβ aggregation remain elusive. Imaging mass spectrometry
(IMS) is a powerful technique to comprehensively elucidate the spatial
distribution patterns of lipids, peptides, and proteins in biological
tissue sections. In the present study, matrix-assisted laser desorption/ionization
(MALDI) mass spectrometry (MS)-based imaging was used on transgenic
Alzheimer’s disease mouse (tgArcSwe) brain tissue to investigate
the sphingolipid microenvironment of individual Aβ plaques and
elucidate plaque-associated sphingolipid alterations. Multivariate
data analysis was used to interrogate the IMS data for identifying
pathologically relevant, anatomical features based on their lipid
chemical profile. This approach revealed sphingolipid species that
distinctly located to cortical and hippocampal deposits, whose Aβ
identity was further verified using fluorescent amyloid staining and
immunohistochemistry. Subsequent multivariate statistical analysis
of the spectral data revealed significant localization of gangliosides
and ceramides species to Aβ positive plaques, which was accompanied
by distinct local reduction of sulfatides. These plaque-associated
changes in sphingolipid levels implicate a functional role of sphingolipid
metabolism in Aβ plaque pathology and AD pathogenesis. Taken
together, the presented data highlight the potential of imaging mass
spectrometry as a powerful approach for probing Aβ plaque-associated
lipid changes underlying AD pathology.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
| | - Dimitri Brinet
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Department
of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Wojciech Michno
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
| | - Stina Syvänen
- Department
of Public Health and Caring Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Dag Sehlin
- Department
of Public Health and Caring Sciences, Uppsala University, 752 37 Uppsala, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department
of Molecular Neuroscience, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Department
of Molecular Neuroscience, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Department
of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
19
|
Itokazu Y, Tsai YT, Yu RK. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 2016; 34:749-756. [PMID: 27540730 DOI: 10.1007/s10719-016-9719-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/03/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yi-Tzang Tsai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
20
|
Ungureanu AA, Benilova I, Krylychkina O, Braeken D, De Strooper B, Van Haesendonck C, Dotti CG, Bartic C. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci Rep 2016; 6:25841. [PMID: 27173984 PMCID: PMC4865860 DOI: 10.1038/srep25841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/22/2016] [Indexed: 01/09/2023] Open
Abstract
Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration.
Collapse
Affiliation(s)
- Andreea-Alexandra Ungureanu
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Iryna Benilova
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | | | | | - Bart De Strooper
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | - Chris Van Haesendonck
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Carlos G Dotti
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium.,CSIC, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Campus Cantoblanco, 28049 Madrid, Spain
| | - Carmen Bartic
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| |
Collapse
|
21
|
Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci 2015; 16:26417-51. [PMID: 26556341 PMCID: PMC4661820 DOI: 10.3390/ijms161125961] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. The risk of AD increases with age. Although two of the main pathological features of AD, amyloid plaques and neurofibrillary tangles, were already recognized by Alois Alzheimer at the beginning of the 20th century, the pathogenesis of the disease remains unsettled. Therapeutic approaches targeting plaques or tangles have not yet resulted in satisfactory improvements in AD treatment. This may, in part, be due to early-onset and late-onset AD pathogenesis being underpinned by different mechanisms. Most animal models of AD are generated from gene mutations involved in early onset familial AD, accounting for only 1% of all cases, which may consequently complicate our understanding of AD mechanisms. In this article, the authors discuss the pathogenesis of AD according to the two main neuropathologies, including senescence-related mechanisms and possible treatments using stem cells, namely mesenchymal and neural stem cells.
Collapse
Affiliation(s)
- Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Jiri Ruzicka
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Lucia Machova Urdzikova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| |
Collapse
|
22
|
Uptake of raft components into amyloid β-peptide aggregates and membrane damage. Anal Biochem 2015; 481:18-26. [PMID: 25908557 DOI: 10.1016/j.ab.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/13/2015] [Accepted: 04/12/2015] [Indexed: 01/26/2023]
Abstract
Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure.
Collapse
|
23
|
Angerer TB, Dowlatshahi Pour M, Malmberg P, Fletcher JS. Improved molecular imaging in rodent brain with time-of-flight-secondary ion mass spectrometry using gas cluster ion beams and reactive vapor exposure. Anal Chem 2015; 87:4305-13. [PMID: 25799886 DOI: 10.1021/ac504774y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Imaging mass spectrometry has shown to be a valuable method in medical research and can be performed using different instrumentation and sample preparation methods, each one with specific advantages and drawbacks. Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) has the advantage of high spatial resolution imaging but is often restricted to low mass molecular signals and can be very sensitive to sample preparation artifacts. In this report we demonstrate the advantages of using gas cluster ion beams (GCIBs) in combination with trifluoracetic acid (TFA) vapor exposure for the imaging of lipids in mouse brain sections. There is an optimum exposure to TFA that is beneficial for increasing high mass signal as well as producing signal from previously unobserved species in the mass spectrum. Cholesterol enrichment and crystallization on the sample surface is removed by TFA exposure uncovering a wider range of lipid species in the white matter regions of the tissue, greatly expanding the chemical coverage and the potential application of TOF-SIMS imaging in neurological studies. Ar4000(+) (40 keV) in combination with TFA treatment facilitates high resolution, high mass imaging closing the gap between TOF-SIMS and matrix-assisted laser desorption ionization (MALDI).
Collapse
Affiliation(s)
- Tina B Angerer
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Masoumeh Dowlatshahi Pour
- ‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Per Malmberg
- ‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,‡Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
24
|
Yang DS, Stavrides P, Saito M, Kumar A, Rodriguez-Navarro JA, Pawlik M, Huo C, Walkley SU, Saito M, Cuervo AM, Nixon RA. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. ACTA ACUST UNITED AC 2014; 137:3300-18. [PMID: 25270989 DOI: 10.1093/brain/awu278] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Philip Stavrides
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Mitsuo Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Asok Kumar
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Jose A Rodriguez-Navarro
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Monika Pawlik
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Steven U Walkley
- 4 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Mariko Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Ana M Cuervo
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ralph A Nixon
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA 5 Department of Cell Biology, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
25
|
Fantini J, Yahi N, Garmy N. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 2013; 4:120. [PMID: 23772214 PMCID: PMC3677124 DOI: 10.3389/fphys.2013.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/08/2013] [Indexed: 11/28/2022] Open
Abstract
Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes.
Collapse
Affiliation(s)
- Jacques Fantini
- EA-4674, Interactions Moléculaires et Systèmes Membranaires, Aix-Marseille Université Marseille, France
| | | | | |
Collapse
|
26
|
Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα. ASN Neuro 2013; 5:141-8. [PMID: 23565921 PMCID: PMC3667643 DOI: 10.1042/an20130006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease), we compared the ganglioside compositions of the brains of a double-transgenic (Tg) mouse model [APP (amyloid precursor protein)/PSEN1 (presenilin)] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase) gene (APP/PSEN1/GD3S(-/-)). These animals were chosen since it was previously reported that APP/PSEN1/GD3S(-/-) triple-mutant mice performed as well as WT (wild-type) control and GD3S(-/-) mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1), as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S(-/-)), the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S(-/-)) may contribute to the memory retention in these mice.
Collapse
|
27
|
Sasahara K, Morigaki K, Shinya K. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure. Phys Chem Chem Phys 2013; 15:8929-39. [DOI: 10.1039/c3cp44517h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|