1
|
Nagy N, Czepiel KS, Kaber G, Stefanovski D, Hargil A, Pennetzdorfer N, Targ R, Reghupaty SC, Wight TN, Vernon RB, Hull-Meichle RL, Marshall P, Medina CO, Martinez H, Kalinowski A, Paladini RD, Garantziotis S, Knowles JW, Bollyky PL. Hymecromone Promotes Longevity and Insulin Sensitivity in Mice. Cells 2024; 13:1727. [PMID: 39451245 PMCID: PMC11506560 DOI: 10.3390/cells13201727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Given that the extracellular matrix polymer hyaluronan (HA) has been implicated in longevity, we asked whether 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, impacts lifespan in mice. We designed a prospective study of long-term administration of 4-MU with conventional C57BL/6J mice. We find that 4-MU extends median survival from 122 weeks (control) to 154 weeks (4-MU), an increase of 32 weeks (p < 0.0001 by Log-rank Mantel Cox test). The maximum lifespan of 4-MU treated mice increased from 159 to 194 weeks. In tandem with these effects, 4-MU enhances insulin sensitivity, a metabolic parameter known to regulate lifespan, as measured by insulin tolerance testing (ITT) as well as frequent sampling intra venous glucose tolerance tests (FSIVGTTs). We further observed that 4-MU treated mice weigh less while consuming the same amount of food, indicating that 4-MU treatment alters energy expenditure. However, we do not observe changes in tissue HA content in this model. We conclude that 4-MU promotes insulin sensitivity and longevity but that the underlying mechanism, and the contribution of HA is unclear. 4-MU, already approved in various countries for hepatobiliary conditions, is currently under investigation and clinical development as a therapy for several chronic inflammatory conditions. These data suggest that the beneficial effects of 4-MU on tissue metabolism may include effects on longevity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Kathryn S. Czepiel
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA;
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Robert Targ
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Saranya C. Reghupaty
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas N. Wight
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101, USA (R.B.V.)
| | - Robert B. Vernon
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101, USA (R.B.V.)
| | - Rebecca L. Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98108, USA;
| | - Payton Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Carlos O. Medina
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Hunter Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| | - Anissa Kalinowski
- Halo Biosciences, 125 University St., Palo Alto, CA 94301, USA (R.D.P.)
| | | | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - Joshua W. Knowles
- Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (N.N.); (K.S.C.); (A.H.)
| |
Collapse
|
2
|
Izuo N, Watanabe N, Noda Y, Saito T, Saido TC, Yokote K, Hotta H, Shimizu T. Insulin resistance induces earlier initiation of cognitive dysfunction mediated by cholinergic deregulation in a mouse model of Alzheimer's disease. Aging Cell 2023; 22:e13994. [PMID: 37822109 PMCID: PMC10652326 DOI: 10.1111/acel.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid β burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Nobuhiro Watanabe
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Yoshihiro Noda
- Department of Animal FacilityTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takashi Saito
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
- Department of Neurocognitive ScienceInstitute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C. Saido
- Laboratory for Proteolytic NeuroscienceRIKEN Center for Brain ScienceWakoJapan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Harumi Hotta
- Department of Autonomic NeuroscienceTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Graduate School of MedicineChiba UniversityChibaJapan
- Aging Stress Response Research Project TeamNational Center for Geriatrics and GerontologyObuJapan
| |
Collapse
|
3
|
Kolb H, Kempf K, Martin S. Insulin and aging - a disappointing relationship. Front Endocrinol (Lausanne) 2023; 14:1261298. [PMID: 37854186 PMCID: PMC10579801 DOI: 10.3389/fendo.2023.1261298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Experimental studies in animal models of aging such as nematodes, fruit flies or mice have observed that decreased levels of insulin or insulin signaling promotes longevity. In humans, hyperinsulinemia and concomitant insulin resistance are associated with an elevated risk of age-related diseases suggestive of a shortened healthspan. Age-related disorders include neurodegenerative diseases, hypertension, cardiovascular disease, and type 2 diabetes. High ambient insulin concentrations promote increased lipogenesis and fat storage, heightened protein synthesis and accumulation of non-functional polypeptides due to limited turnover capacity. Moreover, there is impaired autophagy activity, and less endothelial NO synthase activity. These changes are associated with mitochondrial dysfunction and oxidative stress. The cellular stress induced by anabolic activity of insulin initiates an adaptive response aiming at maintaining homeostasis, characterized by activation of the transcription factor Nrf2, of AMP activated kinase, and an unfolded protein response. This protective response is more potent in the long-lived human species than in short-lived models of aging research resulting in a stronger pro-aging impact of insulin in nematodes and fruit flies. In humans, resistance to insulin-induced cell stress decreases with age, because of an increase of insulin and insulin resistance levels but less Nrf2 activation. These detrimental changes might be contained by adopting a lifestyle that promotes low insulin/insulin resistance levels and enhances an adaptive response to cellular stress, as observed with dietary restriction or exercise.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| |
Collapse
|
4
|
Zegarra-Valdivia J, Fernandez AM, Martinez-Rachadell L, Herrero-Labrador R, Fernandes J, Torres Aleman I. Insulin and insulin-like growth factor-I receptors in astrocytes exert different effects on behavior and Alzheimer´s-like pathology. F1000Res 2022; 11:663. [PMID: 36636477 PMCID: PMC9823242 DOI: 10.12688/f1000research.121901.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Pleiotropic actions of insulin and insulin-like growth factor I (IGF-I) in the brain are context- and cell-dependent, but whether this holds for their receptors (insulin receptor (IR) and IGF-I receptor (IGF-IR), respectively), is less clear. Methods: We compared mice lacking IR or IGF-IR in glial fibrillary astrocytic protein (GFAP)-expressing astrocytes in a tamoxifen-regulated manner, to clarify their role in this type of glial cells, as the majority of data of their actions in brain have been obtained in neurons. Results: We observed that mice lacking IR in GFAP astrocytes (GFAP IR KO mice) develop mood disturbances and maintained intact cognition, while at the same time show greater pathology when cross-bred with APP/PS1 mice, a model of familial Alzheimer´s disease (AD). Conversely, mice lacking IGF-IR in GFAP astrocytes (GFAP-IGF-IR KO mice) show cognitive disturbances, maintained mood tone, and show control-dependent changes in AD-like pathology. Conclusions: These observations confirm that the role of IR and IGF-IR in the brain is cell-specific and context-dependent.
Collapse
Affiliation(s)
- Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, 48940, Spain,Cajal Institute, Madrid, 28002, Spain,CIBERNED, Madrid, Spain,Universidad Señor de Sipán, Chiclayo, Peru
| | | | | | | | - Jansen Fernandes
- Cajal Institute, Madrid, 28002, Spain,Universidade Federal São Paulo, São Paulo, Brazil
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, 48940, Spain,CIBERNED, Madrid, Spain,Ikerbasque Foundation for Science, Bilbao, Spain,
| |
Collapse
|
6
|
Nelson JF, Strong R, Bokov A, Diaz V, Ward W. Probing the relationship between insulin sensitivity and longevity using genetically modified mice. J Gerontol A Biol Sci Med Sci 2012; 67:1332-8. [PMID: 23089336 DOI: 10.1093/gerona/gls199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interference in insulin and/or insulin-like growth factor 1 (IGF-1) signaling can extend invertebrate life span, and interference in IGF-1 signaling can extend murine life span. Whether interference with murine insulin signaling, which can be diabetogenic and pathological, is also life-extending is controversial. We therefore measured life span in 3 murine strains genetically modified to reduce or increase insulin sensitivity. Mice with reduced insulin sensitivity were hemizygous for a null mutation in the insulin receptor (insulin receptor knockout mice; IRKO(+/-)). Mice with increased insulin sensitivity either had a null mutation of protein tyrosine phosphatase 1B (PTP-1B(-/-)) or overexpressed Peroxisome proliferator-activated receptor-α coactivator (PGC)-1α (PGC-1α(TG)). Life span of insulin insensitive IRKO(+/) mice was increased (males) or unaffected (females). Life spans of mice with increased insulin sensitivity were shortened overall (PTP-1B(-/-) mice) or partially (PGC-1α(TG): survival at the 25th percentile was reduced). These results show that insulin sensitivity in some murine genotypes is inversely related to longevity and provide further evidence for evolutionary conservation of this pathway as a modulator of longevity.
Collapse
Affiliation(s)
- James F Nelson
- Department of Physiology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA.
| | | | | | | | | |
Collapse
|