1
|
Seif-Eldein NA, Abu El Wafa SA, Mohammed EZ, Temraz A. Cymbopogon proximus phytochemicals induce S-phase arrest in A549 lung cancer cell lines via CDK2/cyclin A2 inhibition: gas chromatography-mass spectrometry and molecular docking analyses. Z NATURFORSCH C 2024; 79:275-284. [PMID: 38780470 DOI: 10.1515/znc-2024-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Cymbopogon proximus comprises several phytoconstituent classes that are reported to possess anticancer activity; however, studies on the anticancer potentials of the plant are lacking. C. proximus was extracted using solvents with increasing polarity. In-vitro cytotoxic activity of C. proximus extracts was examined against liver (HepG2), lung (A549), prostate (PC3), and bone (MG63) cell lines using MTT assay in comparison to doxorubicin. Flow cytometry was used to analyze the cell cycle for identification of the phase of inhibition. Chemical composition of the most active fraction was examined using the GC/MS technique. Molecular docking was used to explore the mechanism of cytotoxicity against A549, and the results were confirmed by Western blot analysis. Petroleum ether fraction was the highly effective fraction against A549 with IC50 = 14.02 ± 2.79. GC/MS analysis of Pet.Eth led to the identification of nine compounds in unsaponifiable matter and 27 components in the saponifiable fraction. Di-N-octyl phthalate, 3-β-hydroxylean-11.13(18)-dien-30-oic acid methyl ester, elemol hydrocarbons, linoelaidic acid and linoleic acid demonstrated the lowest docking binding scores and similar binding modes against CDK2 as compared to that attained by the native ligand R-Roscovitine "CDK2 ATP inhibitor". Western blot analysis demonstrated that CDK2/cyclinA2 protein expression has been suppressed in A549 cell lines by Pet.Eth fraction.
Collapse
Affiliation(s)
- Noha A Seif-Eldein
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, 636749 Al Azhar University , Cairo, Egypt
| | - Salwa A Abu El Wafa
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, 636749 Al Azhar University , Cairo, Egypt
| | - Esraa Z Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, 110130 October 6 University , Giza 12585, Egypt
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, 636749 Al Azhar University , Cairo, Egypt
| |
Collapse
|
2
|
Verma S, Magazzù G, Eftekhari N, Lou T, Gilhespy A, Occhipinti A, Angione C. Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients. CELL REPORTS METHODS 2024; 4:100817. [PMID: 38981473 PMCID: PMC11294841 DOI: 10.1016/j.crmeth.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.
Collapse
Affiliation(s)
- Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | | | | | - Thai Lou
- Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Alex Gilhespy
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK; Centre for Digital Innovation, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington, UK.
| |
Collapse
|
3
|
Wang B, Yang X, Sun X, Liu J, Fu Y, Liu B, Qiu J, Lian J, Zhou J. ATF3 in atherosclerosis: a controversial transcription factor. J Mol Med (Berl) 2022; 100:1557-1568. [PMID: 36207452 DOI: 10.1007/s00109-022-02263-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the pathophysiological basis of most malignant cardiovascular diseases, remains a global concern. Transcription factors play a key role in regulating cell function and disease progression in developmental signaling pathways involved in atherosclerosis. Activated transcription factor (ATF) 3 is an adaptive response gene in the ATF/cAMP response element binding (CREB) protein family that acts as a transcription suppressor or activator by forming homodimers or heterodimers with other ATF/CREB members. Appropriate ATF3 expression is vital for normal physiological cell function. Notably, ATF3 exhibits distinct roles in vascular endothelial cells, macrophages, and the liver, which will also be described in detail. This review provides a new perspective for atherosclerosis therapy by summarizing the mechanism of ATF3 in atherosclerosis, as well as the structure and pathophysiological properties of ATF3. KEY MESSAGES: • In endothelial cells, ATF3 overexpression aggravates oxidative stress and inflammation. • In macrophages and liver cells, ATF3 can act as a negative regulator of inflammation and promote cholesterol metabolism. • ATF3 can be used as a potential therapeutic factor in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Xi Yang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Xinyi Sun
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jianhui Liu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Bingyang Liu
- Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jun Qiu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China. .,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China. .,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
4
|
Bordoloi D, Harsha C, Padmavathi G, Banik K, Sailo BL, Roy NK, Girisa S, Thakur KK, Devi AK, Chinnathambi A, Alahmadi TA, Alharbi SA, Shakibaei M, Kunnumakkara AB. Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling cascade. Life Sci 2022; 293:120332. [PMID: 35041835 DOI: 10.1016/j.lfs.2022.120332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very less; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Mathew C, Tamir S, Tripp RA, Ghildyal R. Reversible disruption of XPO1-mediated nuclear export inhibits respiratory syncytial virus (RSV) replication. Sci Rep 2021; 11:19223. [PMID: 34584169 PMCID: PMC8479129 DOI: 10.1038/s41598-021-98767-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract disease in infants, young children, the elderly and immunocompromised individuals. Therapy for RSV infections is limited to high risk infants and there are no safe and efficacious vaccines. Matrix (M) protein is a major RSV structural protein with a key role in virus assembly. Interestingly, M is localised to the nucleus early in infection and its export into the cytoplasm by the nuclear exporter, exportin-1 (XPO1) is essential for RSV assembly. We have shown previously that chemical inhibition of XPO1 function results in reduced RSV replication. In this study, we have investigated the anti-RSV efficacy of Selective Inhibitor of Nuclear Export (SINE) compounds, KPT-335 and KPT-185. Our data shows that therapeutic administration of the SINE compounds results in reduced RSV titre in human respiratory epithelial cell culture. Within 24 h of treatment, RSV replication and XPO1 expression was reduced, M protein was partially retained in the nucleus, and cell cycle progression was delayed. Notably, the effect of SINE compounds was reversible within 24 h after their removal. Our data show that reversible inhibition of XPO1 can disrupt RSV replication by affecting downstream pathways regulated by the nuclear exporter.
Collapse
Affiliation(s)
- Cynthia Mathew
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
6
|
Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, Liu L, Liu W, Yang T, Cao X, Yu B, Xu M, Chen YG, Chen L. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics 2021; 11:6592-6606. [PMID: 33995678 PMCID: PMC8120205 DOI: 10.7150/thno.59816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Purpose: Clinical success of cancer therapy is severely limited by drug resistance, attributed in large part to the loss of function of tumor suppressor genes (TSGs). Developing effective strategies to treat those tumors is challenging, but urgently needed in clinic. Experimental Design: MYOCD is a clinically relevant TSG in lung cancer patients. Our in vitro and in vivo data confirm its tumor suppressive function. Further analysis reveals that MYOCD potently inhibits stemness of lung cancer stem cells. Mechanistically, MYOCD localizes to TGFBR2 promoter region and thereby recruits PRMT5/MEP50 complex to epigenetically silence its transcription. Conclusions: NSCLC cells deficient of MYOCD are particularly sensitive to TGFBR kinase inhibitor (TGFBRi). TGFBRi and stemness inhibitor synergize with existing drugs to treat MYOCD deficient lung cancers. Our current work shows that loss of function of MYOCD creates Achilles' heels in lung cancer cells, which might be exploited in clinic.
Collapse
|
7
|
Zafar A, Jabbar M, Manzoor Y, Gulzar H, Hassan SG, Nazir MA, Ain-ul-Haq, Mustafa G, Sahar R, Masood A, Iqbal A, Hussain M, Hasan M. Quantifying Serum Derived Differential Expressed and Low Molecular Weight Protein in Breast Cancer Patients. Protein Pept Lett 2020; 27:658-673. [DOI: 10.2174/0929866527666200110155609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Background:Searching the biomarker from complex heterogeneous material for early detection of disease is a challenging task in the field of biomedical sciences.Objective:The study has been arranged to explore the proteomics serum derived profiling of the differential expressed and low molecular weight protein in breast cancer patient.Methods:Quantitative proteome was analyzed using the Nano LC/Mass and Bioinformatics tool.Results:This quantification yields 239 total protein constituting 29% of differentially expressed protein, with 82% downregulated differential protein and 18% up-regulated differential protein. While 12% of total protein were found to be cancer inducing proteins. Gene Ontology (GO) described that the altered proteins with 0-60 kDa mass in nucleus, cytosol, ER, and mitochondria were abundant that chiefly controlled the RNA, DNA, ATP, Ca ion and receptor bindings.Conclusion:The study demonstrate that the organelle specific, low molecular weighted proteins are significantly important biomarker. That act as strong agents in the prognosis and diagnosis of breast cancer at early stage.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryum Jabbar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Manzoor
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Gulzar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shahzad Gul Hassan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Muniba Anum Nazir
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ain-ul-Haq
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Mustafa
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Romana Sahar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aqeel Masood
- Bahawal Victoria Hospital, Bahawalpur (BVH), Pakistan
| | | | - Mulazim Hussain
- Department of Pediatrician, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Lizardo RCM, Cho H, Lee J, Won Y, Seo K. Extracts of
Elaeagnus multiflora
Thunb. fruit fermented by lactic acid bacteria inhibit SW480 human colon adenocarcinoma via induction of cell cycle arrest and suppression of metastatic potential. J Food Sci 2020. [DOI: 10.1111/1750-3841.15300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rona Camille M. Lizardo
- Institute of Food Science and Technology University of the Philippines Los Baños Laguna 4031 Philippines
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| | - Hyun‐Dong Cho
- Division of Agriculture, Department of Food Science University of Arkansas Fayetteville AR 72704 U.S.A
| | - Jin‐Hwan Lee
- Department of Life Resources Industry Dong‐A University Busan 49315 Republic of Korea
| | - Yeong‐Seon Won
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| | - Kwon‐Il Seo
- Department of Biotechnology Dong‐A University Busan 49315 Republic of Korea
| |
Collapse
|
9
|
Eid JI, Das B. Molecular insights and cell cycle assessment upon exposure to Chaga (Inonotus obliquus) mushroom polysaccharides in zebrafish (Danio rerio). Sci Rep 2020; 10:7406. [PMID: 32366825 PMCID: PMC7198532 DOI: 10.1038/s41598-020-64157-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Chaga (Inonotus obliquus) mushroom is considered as one of the most powerful antioxidants across the world. Though the therapeutic effects of Chaga components are well characterized in vitro, the in vivo developmental effects are not elucidated in detail. In this study, we assessed the in vivo developmental effects of Chaga polysaccharides in zebrafish, along with revealing the effects on cell cycle and apoptosis. Chaga mushroom polysaccharides comprised xylulose, rhamnose, mannose, glucose, inositol, and galactose, in addition to phenolic compounds; zebrafish embryos exhibited normal embryonic development upon transient exposure to Chaga extract (24 hours). Most embryos (>90%) were found to be healthy even at high concentrations (5 mg/mL). In addition, staining with the DNA binding dye, acridine orange showed that Chaga polysaccharides alleviated oxidative stress. Flow cytometric analysis using H2DCFDA that specifically binds to cells with fragmented DNA showed significantly reduced levels of intracellular reactive oxygen species (ROS) (p < 0.05), which in turn reduced apoptosis in the developing embryos. Cell cycle analysis by measuring the DNA content using flow cytometry revealed that Chaga polysaccharides moderately arrested the cells at G1 stage, thereby inhibiting cell proliferation that can be further explored in cancer studies. Overall, transient exposure of Chaga polysaccharide extract reduced intracellular ROS and assisted in the normal development of zebrafish.
Collapse
Affiliation(s)
- Jehane Ibrahim Eid
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
10
|
Wu CY, Chan CH, Dubey NK, Wei HJ, Lu JH, Chang CC, Cheng HC, Ou KL, Deng WP. Highly Expressed FOXF1 Inhibit Non-Small-Cell Lung Cancer Growth via Inducing Tumor Suppressor and G1-Phase Cell-Cycle Arrest. Int J Mol Sci 2020; 21:ijms21093227. [PMID: 32370197 PMCID: PMC7246752 DOI: 10.3390/ijms21093227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer pathogenesis results from genetic alteration-induced high or low transcriptional programs, which become highly dependent on regulators of gene expression. However, their role in progressive regulation of non-small-cell lung cancer (NSCLC) and how these dependencies may offer opportunities for novel therapeutic options remain to be understood. Previously, we identified forkhead box F1 (FOXF1) as a reprogramming mediator which leads to stemnesss when mesenchymal stem cells fuse with lung cancer cells, and we now examine its effect on lung cancer through establishing lowly and highly expressing FOXF1 NSCLC engineered cell lines. Higher expression of FOXF1 was enabled in cell lines through lentiviral transduction, and their viability, proliferation, and anchorage-dependent growth was assessed. Flow cytometry and Western blot were used to analyze cellular percentage in cell-cycle phases and levels of cellular cyclins, respectively. In mice, tumorigenic behavior of FOXF1 was investigated. We found that FOXF1 was downregulated in lung cancer tissues and cancer cell lines. Cell proliferation and ability of migration, anchorage-independent growth, and transformation were inhibited in H441-FOXF1H and H1299-FOXF1H, with upregulated tumor suppressor p21 and suppressed cellular cyclins, leading to cell-cycle arrest at the gap 1 (G1) phase. H441-FOXF1H and H1299-FOXF1H injected mice showed reduced tumor size. Conclusively, highly expressing FOXF1 inhibited NSCLC growth via activating tumor suppressor p21 and G1 cell-cycle arrest, thus offering a potentially novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Chia-Yu Wu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Jian Wei
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Deb B, Sengupta P, Sambath J, Kumar P. Bioinformatics Analysis of Global Proteomic and Phosphoproteomic Data Sets Revealed Activation of NEK2 and AURKA in Cancers. Biomolecules 2020; 10:biom10020237. [PMID: 32033228 PMCID: PMC7072708 DOI: 10.3390/biom10020237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor heterogeneity attributes substantial challenges in determining the treatment regimen. Along with the conventional treatment, such as chemotherapy and radiotherapy, targeted therapy has greater impact in cancer management. Owing to the recent advancements in proteomics, we aimed to mine and re-interrogate the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data sets which contain deep scale, mass spectrometry (MS)-based proteomic and phosphoproteomic data sets conducted on human tumor samples. Quantitative proteomic and phosphoproteomic data sets of tumor samples were explored and downloaded from the CPTAC database for six different cancers types (breast cancer, clear cell renal cell carcinoma (CCRCC), colon cancer, lung adenocarcinoma (LUAD), ovarian cancer, and uterine corpus endometrial carcinoma (UCEC)). We identified 880 phosphopeptide signatures for differentially regulated phosphorylation sites across five cancer types (breast cancer, colon cancer, LUAD, ovarian cancer, and UCEC). We identified the cell cycle to be aberrantly activated across these cancers. The correlation of proteomic and phosphoproteomic data sets identified changes in the phosphorylation of 12 kinases with unchanged expression levels. We further investigated phosphopeptide signature across five cancer types which led to the prediction of aurora kinase A (AURKA) and kinases-serine/threonine-protein kinase Nek2 (NEK2) as the most activated kinases targets. The drug designed for these kinases could be repurposed for treatment across cancer types.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (B.D.); (J.S.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Pratyay Sengupta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India;
| | - Janani Sambath
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (B.D.); (J.S.)
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; (B.D.); (J.S.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence: ; Tel.: +91-802-841-6140; Fax: +91-802-841-6132
| |
Collapse
|
12
|
Zhao L, Zhang T, Geng H, Liu ZQ, Liang ZF, Zhang ZQ, Min J, Yu DX, Zhong CY. MAPK/AP-1 pathway regulates benzidine-induced cell proliferation through the control of cell cycle in human normal bladder epithelial cells. Oncol Lett 2018; 16:4628-4634. [PMID: 30197677 DOI: 10.3892/ol.2018.9155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Bladder cancer is the most common malignancy of the urinary tract. Long-term exposure to benzidine is one of the major causes of bladder cancer. However, the mechanism of benzidine-induced bladder cancer is not yet sufficiently characterized. Dysregulated cell proliferation serves a critical role in cancer initiation and development; whether benzidine promotes cell proliferation, and the role of MAPKs in this process, have not previously been investigated. The present study aimed to investigate the benzidine-induced modulation of intracellular mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1) signaling cascades on cell proliferation in SV-40 immortalized human uroepithelial cells (SV-HUC-1). It was identified that benzidine exposure enhanced the proliferation of SV-HUC-1 cells, promoted the transition of cells from G1 to S phase and altered the expression level of cell cycle-associated genes at the mRNA and protein levels. Furthermore, exposure of the SV-HUC-1 cells to benzidine was associated with the activation of MAPKs, including extracellular regulated protein kinases 1 and 2, p38 and Jun N-terminal kinase. The downstream target of MAPKs, AP-1 monomers, was also activated. Benzidine-induced proliferation was reversed by MAPK-specific inhibitors. Thus, the present study demonstrated that benzidine enhances the proliferation of bladder cells via activating the MAPK/AP-1 pathway, which may provide novel insights into the molecular mechanisms of benzidine-initiated bladder tumorigenesis, as well as cancer prevention.
Collapse
Affiliation(s)
- Li Zhao
- Department of Urology, Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhi-Qi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhao-Feng Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Department of Medical Examination, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhi-Qiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Min
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - De-Xin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cai-Yun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
13
|
Kumar K, Sabarwal A, Singh RP. Mancozeb selectively induces mitochondrial-mediated apoptosis in human gastric carcinoma cells through ROS generation. Mitochondrion 2018; 48:1-10. [PMID: 29902665 DOI: 10.1016/j.mito.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 05/24/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Mancozeb (Manganese ethylene bis-dithiocarbamate with zinc salt) is a dithiocarbamate fungicide used to control fungal disease in many fruit plants, flowers and the maintenance of field crops. The effect of mancozeb on cell viability of human gastric adenocarcinoma AGS, SNU-1 cells and human normal FHs 74 Int cells were investigated. This study demonstrated that mancozeb was able to inhibit cell proliferation by 56-82% at 5-10 μM concentrations after 48 h. Mancozeb treatment for 48 h resulted in 33% (P < 0.05) and 61% (P < 0.001) increase in apoptotic cells at 5 and 10 μM concentrations in AGS cells, respectively. Treatment with mancozeb did not cause cell cycle arrest, while modulated the expression level of cleaved caspase-3, and cleavage of poly-(ADP-ribose) polymerase. Furthermore, treatment with mancozeb caused a rapid stimulation of reactive oxygen species (ROS) and loss of mitochondrial transmembrane potential. The results also showed that mancozeb-induced apoptosis was accompanied by up-regulation of Bax and down-regulation of Bcl-2 and Bcl-xL. Overall, our data suggested that mancozeb caused ROS generation which induced significant (P < 0.05) apoptosis in AGS cells that was attenuated with pretreatment of NAC. More importantly, same concentration of mancozeb did not show any considerable effect on cell growth, death, cell cycle arrest and ROS generation in normal FHs 74 Int cells. Overall, for the first time these results suggest that mancozeb has selective anticancer activity at lower concentrations against gastric cancer cells.
Collapse
Affiliation(s)
- Kunal Kumar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Akash Sabarwal
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
14
|
Hsu YL, Hung JY, Lee YL, Chen FW, Chang KF, Chang WA, Tsai YM, Chong IW, Kuo PL. Identification of novel gene expression signature in lung adenocarcinoma by using next-generation sequencing data and bioinformatics analysis. Oncotarget 2017; 8:104831-104854. [PMID: 29285217 PMCID: PMC5739604 DOI: 10.18632/oncotarget.21022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Lung adenocarcinoma is one of the leading causes of cancer-related death worldwide. We showed transcriptomic profiles in three pairs of tumors and adjacent non-tumor lung tissues using next-generation sequencing (NGS) to screen protein-coding RNAs and microRNAs. Combined with meta-analysis from the Oncomine and Gene Expression Omnibus (GEO) databases, we identified a representative genetic expression signature in lung adenocarcinoma. There were 9 upregulated genes, and 8 downregulated genes in lung adenocarcinoma. The analysis of the effects from each gene expression on survival outcome indicated that 6 genes (AGR2, SPDEF, CDKN2A, CLDN3, SFN, and PHLDA2) play oncogenic roles, and 7 genes (PDK4, FMO2, CPED1, GNG11, IL33, BTNL9, and FABP4) act as tumor suppressors in lung adenocarcinoma. In addition, we also identified putative genetic interactions, in which there were 5 upregulated microRNAs with specific targets - hsa-miR-183-5p-BTNL9, hsa-miR-33b-5p-CPED1, hsa-miR-429-CPED1, hsa-miR-182-5p-FMO2, and hsa-miR-130b-5p-IL33. These 5 microRNAs have been shown to be associated with tumorigenesis in lung cancer. Our findings suggest that these genetic interactions play important roles in the progression of lung adenocarcinoma. We propose that this molecular change of genetic expression may represent a novel signature in lung adenocarcinoma, which may be developed for diagnostic and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Lung Lee
- Division of Thoracic surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RTH, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJWL. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017; 6:e23421. [PMID: 28731408 PMCID: PMC5590809 DOI: 10.7554/elife.23421] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is an emerging field that translates these medical images into quantitative data to enable phenotypic profiling of tumors. While radiomics has been associated with several clinical endpoints, the complex relationships of radiomics, clinical factors, and tumor biology are largely unknown. To this end, we analyzed two independent cohorts of respectively 262 North American and 89 European patients with lung cancer, and consistently identified previously undescribed associations between radiomic imaging features, molecular pathways, and clinical factors. In particular, we found a relationship between imaging features, immune response, inflammation, and survival, which was further validated by immunohistochemical staining. Moreover, a number of imaging features showed predictive value for specific pathways; for example, intra-tumor heterogeneity features predicted activity of RNA polymerase transcription (AUC = 0.62, p=0.03) and intensity dispersion was predictive of the autodegration pathway of a ubiquitin ligase (AUC = 0.69, p<10-4). Finally, we observed that prognostic biomarkers performed highest when combining radiomic, genetic, and clinical information (CI = 0.73, p<10-9) indicating complementary value of these data. In conclusion, we demonstrate that radiomic approaches permit noninvasive assessment of both molecular and clinical characteristics of tumors, and therefore have the potential to advance clinical decision-making by systematically analyzing standard-of-care medical images.
Collapse
Affiliation(s)
- Patrick Grossmann
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Olya Stringfield
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Nehme El-Hachem
- Integrative systems biology, Institut de recherches cliniques de Montreal, Montreal, Canada.
| | - Marilyn M Bui
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Emmanuel Rios Velazquez
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Chintan Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Ralph TH Leijenaar
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
- Medical Biophysics Department, University of Toronto, Toronto, Canada
| | - Philippe Lambin
- Department of Radiation Oncology, Research Institute GROW, Maastricht University, Maastricht, Netherlands
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States
| | - Hugo JWL Aerts
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
16
|
Ahn MY, Kim TH, Kwon SM, Yoon HE, Kim HS, Kim JI, Kim YC, Kang KW, Ahn SG, Yoon JH. 5-Nitro-5'-hydroxy-indirubin-3'-oxime (AGM130), an indirubin-3'-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci 2015; 79:122-131. [PMID: 26342773 DOI: 10.1016/j.ejps.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
This study examined the anti-tumor effects of AGM130, a novel indirubin-3'-oxime derivative in A549 human non-small cell lung cancer cells. AGM130 significantly inhibited the proliferation and arrested the cell cycle of G2/M phase. Induction of apoptosis was detected in AGM130-treated A549 cells. The protein levels of Cytochrome c release, Bax, cleaved caspases and PARP were increased in AGM130 treated cells, whereas Bcl-2 levels were decreased. AGM130 inhibited Insulin-like growth factor 1 receptor (IGF1R), AKT/mTOR signaling and inactivated mitogen-activated protein kinases (MAPK). AGM130 also induced slight autophagy as pro-survival function and autophagy inhibition by chloroquine (CQ) induced necrosis. In vivo tumor xenograft model, AGM130 dose-dependently suppressed transplanted A549 cell tumor growth and induced the expression of proliferative cell nuclear antigen (PCNA). AGM130 also increased TUNEL positive apoptotic cell populations and the induction of glandular differentiation with mucin pool compared with vehicle-treated control in tumor tissue. These results suggest that AGM130 is an effective novel indirubin-3'-oxime derivative of anti-cancer drug and may be an attractive candidate for non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Mee-Young Ahn
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Tae-Hyung Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seong-Min Kwon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Hyo-Eun Yoon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Hyung-Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Division of Drug Discovery, Anygen Co., Ltd., Gwangju 500-712, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Division of Drug Discovery, Anygen Co., Ltd., Gwangju 500-712, Republic of Korea
| | - Keon-Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea.
| |
Collapse
|
17
|
Bian C, Li Z, Xu Y, Wang J, Xu L, Shen H. Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study. World J Surg Oncol 2015; 13:128. [PMID: 25890228 PMCID: PMC4415338 DOI: 10.1186/s12957-015-0502-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/09/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Whole-exome sequencing has shown that lung adenocarcinoma (LAC) can be driven by mutant genes, including TP53, P16, and Smad4. The aim of this study was to clarify protein alterations of P53, P16, and Smad4 and to explore their correlations between the protein alterations and clinical outcome. METHODS We investigated associations among P53 mutant (P53(Mut)) expression, and P16 and Smad4 loss-of-expression, with clinical outcome in 120 LAC patients who underwent curative resection, using immunohistochemical (IHC) methods. RESULTS Of the 120 patients, 76 (63.3%) expressed P53(Mut) protein, whereas 54 (45.0%) loss of P16 expressed and 75 (62.5%) loss of Smad4 expressed. P53(Mut) expression was associated with tumor size (P = 0.041) and pathological stage (P = 0.025). Loss of P16 expression was associated with lymph node metastasis (P = 0.001) and pathological stage (P < 0.001). Loss of Smad4 expression was associated with tumor size (P = 0.033), lymph node metastasis (P = 0.014), pathological stage (P = 0.017), and tumor differentiation (P = 0.022). Kaplan-Meier survival analysis showed that tumor size (P = 0.031), lymph node metastasis (P < 0.001), pathological stage (P < 0.001), P53(Mut) protein expression (P = 0.038), and loss of p16 or Smad4 expression (P < 0.001) were significantly associated with shorter overall survival(OS), whereas multivariate analysis indicated that lymph node metastasis (P = 0.014) and loss of p16 or Smad4 expression (P < 0.001) were independent prognostic factors. Analysis of protein combinations showed patients with more alterations had poorer survival (P < 0.001). Spearman correlation analysis showed that loss of Smad4 expression inversely correlated with expression of P53(Mut) (r = (-)0.196, P = 0.032) and positively with lost P16 expression (r =0.182, P = 0.047). CONCLUSIONS The findings indicate that IHC status of P53(Mut), P16, and Smad4 may predict patient outcomes in LAC.
Collapse
Affiliation(s)
- Chunan Bian
- Department of Thoracic Surgery, Nanjing Medical University-Affiliated Cancer Hospital, Nanjing, 210009, China. .,Nanjing Jiangbei Peoples' Hospital, Nanjing, 210048, China.
| | - Zhongyou Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China.
| | - Youtao Xu
- Department of Thoracic Surgery, Nanjing Medical University-Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Jie Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China.
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University-Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Hongbing Shen
- The Public Health College of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
18
|
Chen C, Huang Y, Zhang C, Liu T, Zheng HE, Wan S, Sun S, Meng Q, Chen Y, Wei J. Circulating antibodies to p16 protein-derived peptides in breast cancer. Mol Clin Oncol 2015; 3:591-594. [PMID: 26137272 DOI: 10.3892/mco.2015.485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Overexpression of the p16 protein has been reported in breast cancer and may trigger the secretion of antibodies against itself. Circulating anti-p16 antibodies that were detected with a recombinant protein have been reported in breast cancer. The present study was designed to determine whether the levels of circulating IgG antibody to p16 protein-derived linear antigens are altered in breast cancer. An enzyme-linked immunosorbent assay (ELISA) was developed in-house to determine circulating IgG against peptide antigens derived from the p16 protein in 152 female breast cancer patients and 160 healthy female subjects. The Student's T-test revealed that breast cancer patients exhibited significantly higher levels of anti-p16 IgG antibody compared to control subjects (T=2.02, P=0.045). In addition, ductal cancer appeared to be the main type contributing to the increased levels of circulating anti-p16 antibodies (T=2.08, P=0.038). Of all four stages of breast cancer, stage I was associated with the highest levels of IgG antibody (T=2.02, P=0.045) and receiver operating characteristic (ROC) analysis demonstrated that the area under the ROC curve was 0.74 (95% confidence interval: 0.65-083) and that the sensitivity against a specificity of 90% was 30.3%. Therefore, the levels of circulating IgG antibody to the p16 protein may be a potential biomarker for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Cairen Chen
- School of Clinical Laboratory Science, Guangdong Medical College, Dongguan 523808, P.R. China
| | - Yile Huang
- School of Clinical Laboratory Science, Guangdong Medical College, Dongguan 523808, P.R. China
| | - Cong Zhang
- School of Public Health and MH Radiobiology Research Unit, Jilin University, Changchun 130118, P.R. China
| | - Tong Liu
- Department of Breast Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China
| | - H E Zheng
- School of Clinical Laboratory Science, Guangdong Medical College, Dongguan 523808, P.R. China
| | - Shuli Wan
- School of Clinical Laboratory Science, Guangdong Medical College, Dongguan 523808, P.R. China
| | - Shilong Sun
- School of Public Health and MH Radiobiology Research Unit, Jilin University, Changchun 130118, P.R. China
| | - Qingyong Meng
- School of Clinical Laboratory Science, Guangdong Medical College, Dongguan 523808, P.R. China
| | - Yubing Chen
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jun Wei
- Division of Health Research, University of the Highlands and Islands, Centre for Health Science, Inverness IV2 3JH, UK
| |
Collapse
|
19
|
Jin Y, Guan S, Liu L, Sun S, Lee KH, Wei J. Anti-p16 autoantibodies may be a useful biomarker for early diagnosis of esophageal cancer. Asia Pac J Clin Oncol 2014; 11:e37-41. [PMID: 24811068 DOI: 10.1111/ajco.12198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
AIM Our recent work suggested that circulating IgG antibodies to a linear peptide derived from p16 protein were significantly increased in patients with lung cancer. The present study was then designed to test whether such autoantibodies were also altered in esophageal cancer. METHODS An enzyme-linked immunosorbent assay was developed in-house to determine circulating IgA and IgG antibodies against p16 protein-derived antigens in 97 patients with esophageal squamous cell carcinoma (ESCC) and 226 healthy subjects. RESULTS The levels of anti-p16 IgG but not IgA antibodies were significantly higher in the patient group than the control group (t = 2.81, P = 0.0052); circulating anti-p16 IgG levels were inversely correlated with stages of ESCC (r = -0.30, df = 81, P = 0.0058) and patients with stage I of ESCC had the highest IgG level among all four stages (t = 5.25, P ≤ 0.0001, compared with control subjects). There was no correlation between the levels of IgA and IgG either in the patient group (r = -0.05, df = 86, P = 0.627) or in the control group (r = -0.1, df = 205, P = 0.146). CONCLUSION Circulating IgG autoantibody to p16 protein may be a potential biomarker for early diagnosis of esophageal cancer.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Songlei Guan
- School of Life Science, Jilin Agriculture University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Shilong Sun
- School of Public Health and MH Radiobiology Research Unit, Jilin University, Changchun, China
| | - Kuang-Hui Lee
- Pei-Ling Guan-Si Hospital, Hsin-Fu Kuansi Township, Hsinchu County, Taiwan
| | - Jun Wei
- Division of Health Research, University of the Highlands & Islands, Centre for Health Science, Inverness, UK
| |
Collapse
|
20
|
Benjamin AB, Zhou X, Isaac O, Zhao H, Song Y, Chi X, Sun B, Hao L, Zhang L, Liu L, Guan H, Shao S. PRP19 upregulation inhibits cell proliferation in lung adenocarcinomas by p21-mediated induction of cell cycle arrest. Biomed Pharmacother 2014; 68:463-70. [DOI: 10.1016/j.biopha.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/25/2022] Open
|
21
|
Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2085-2095. [PMID: 24533688 DOI: 10.1021/jf4037722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Garcinol, a polyisoprenylated benzophenone, from Garcinia indica fruit rind has possessed anti-inflammatory, antioxidant, antiproliferation, and anticancer activities. However, the anticancer mechanisms of garcinol in lung cancer were still unclear. Therefore, we examine the effects of garcinol on antiproliferation in human lung cancer cells. Treatments with garcinol for 24 h exhibited morphological changes and inhibited the proliferation of H460 (p53-wild type) and H1299 (p53-null) cells in dose- and time-dependent manners. Furthermore, a significant G1 cell cycle arrest was observed in a dose-dependent treatment after H1299 cells were exposed in garcinol, whereas garcinol induced apoptosis rather than cell cycle arrest in H460 cells. Moreover, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), cyclin D1, and cyclin D3 were decreased, although cyclin E and cyclin-dependent kinase 6 (CDK6) were increased in garcinol-treated H1299 cells. Meanwhile, the protein levels of CDK inhibitors p21(Waf1/Cip1) and p27(KIP1) also exhibited upregulation after garcinol treatments. The enhanced protein-associated level between p21(Waf1/Cip1) and CDK4/2 rather than p27(KIP1) and CDK4/2 was demonstrated in garcinol-treated cells. Additionally, knock-down p21(Waf1/Cip1) by specific siRNA competently prevented garcinol-induced G1 arrest. Besides, garcinol also inhibited ERK and p38-MAPK activations in time-dependent mode. The pretreatment with p38-MAPK inhibitor but not ERK inhibitor raised garcinol-induced G1 population cells. Co-treatment with p38-MAPK inhibitor and garcinol synergistically elevated cyclin E, p21(Waf1/Cip1), and p27(Kip1) expressions. Meanwhile, overexpression dominant negative p38-MAPK also enhanced garcinol-induced p21(Waf1/Cip1) expression in H1299 cells. Accordingly, our data suggested that garcinol induced G1 cell cycle arrest and apoptosis in lung cancer cells under different p53 statuses. The p53-independent G1 cell cycle arrest induced by garcinol might be through upregulation of p21(Waf1/Cip1) triggered from p38-MAPK signaling inactivation.
Collapse
Affiliation(s)
- Sheng-Yung Yu
- Department of Nutritional Science, Fu Jen Catholic University , New Taipei City 24205, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Liu Z, Rader J, He S, Phung T, Thiele CJ. CASZ1 inhibits cell cycle progression in neuroblastoma by restoring pRb activity. Cell Cycle 2014; 12:2210-8. [PMID: 23892435 DOI: 10.4161/cc.25265] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of cell cycle genes such as Cyclin D1 and Chk1 contributes to the undifferentiated phenotype of neuroblastoma (NB). CASZ1 functions as a tumor suppressor in NB; here we sought to determine how loss of CASZ1 contributes to cell cycle dysregulation in NB. CASZ1 restoration in NB cells delays NB cell cycle progression. The earliest changes occur within 8 h of CASZ1 restoration in SY5Y cells with a 2.8-fold increase in the level of p21, an inhibitor of Cdk2/4. By 16 h, there is a 40% decrease in the steady-state levels of Cdk6. Restoration of CASZ1 decreases Cdk2-dependent cyclins A and E protein levels and Cdk4/6-dependent Cyclin D1 protein levels. The restoration of CASZ1 resulted in a decrease in pRb phosphorylation and a significant reduction of E2F transcriptional activity. Subsequent to the changes in the G 1/S transition, induction of CASZ1 results in a decrease in Cyclin B levels and Cdc25c phosphatase levels, an upstream activator of the G 2/M regulator CyclinB:Cdk1. In addition, induction of CASZ1 results in a decrease in the levels of phospho-Chk1, a key M-phase regulatory kinase. Similar results were found in a NB cell line with MYCN amplification. Taken together, this study indicates that restoration of CASZ1 activates pRb in G 1 and inhibits the G 2/M regulators Cyclin B1 and Chk1, leading to a lengthening of NB cell cycle progression and a subsequent decrease in cell proliferation.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch; National Cancer Institute; Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
23
|
Gómez AM, Jarabo Sarceda JR, García-Asenjo JAL, Fernandez C, Hernandez S, Sanz J, Fernandez E, Calatayud J, Torres A, Hernando F. Relationship of immunohistochemical biomarker expression and lymph node involvement in patients undergoing surgical treatment of NSCLC with long-term follow-up. Tumour Biol 2014; 35:4551-9. [PMID: 24443268 DOI: 10.1007/s13277-013-1599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/23/2013] [Indexed: 01/28/2023] Open
Abstract
We try to identify the relationship between immunohistochemical marker expression and lymph node involvement in a cohort of 282 patients followed for 5 years after curative resection for NSCLC. In 189 patients (67%), lymph nodes were unaffected while 93 patients (33%) showed nodal involvement. The expression of 15 molecular markers was determined from each patient by tissue-array immunohistochemistry. Univariate analysis indicated significantly higher expression of E-cadherin, γ-catenin, p27, and p53 in patients with lymph node involvement. In those with unaffected nodes, p16 and Rb were expressed. E-cadherin expression was related to a 50% mortality reduction in patients with node involvement (hazard ratio (HR) 0.5; p = 0.017). c-erbB-2 expression was correlated with a 3.4-fold increase in mortality compared to patients without expression of this marker in subjects without node involvement (HR 3.41; p = 0.017). Multivariate analysis identified c-erbB-2 (HR 2.22; p = 0.089) and p27 (HR 1.44; p = 0.019) as prognostics of mortality while Rb (HR 0.74) indicated a good prognosis. The expression of proteins encoded by oncogenes and tumor suppressor genes was different according to lymph node involvement. The increased mortality related to c-erbB-2 expression in patients with unaffected lymph nodes would suggests a need for adjuvant treatment.
Collapse
Affiliation(s)
- Ana María Gómez
- Thoracic Surgery Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Martin Lagos s/n, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res 2014; 12:14-23. [PMID: 24398389 PMCID: PMC3915512 DOI: 10.1158/1541-7786.mcr-13-0541] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tobacco smoke contains multiple classes of established carcinogens including benzo(a)pyrenes, polycyclic aromatic hydrocarbons, and tobacco-specific nitrosamines. Most of these compounds exert their genotoxic effects by forming DNA adducts and generation of reactive oxygen species, causing mutations in vital genes such as K-Ras and p53. In addition, tobacco-specific nitrosamines can activate nicotinic acetylcholine receptors (nAChR) and to a certain extent β-adrenergic receptors (β-AR), promoting cell proliferation. Furthermore, it has been demonstrated that nicotine, the major addictive component of tobacco smoke, can induce cell-cycle progression, angiogenesis, and metastasis of lung and pancreatic cancers. These effects occur mainly through the α7-nAChRs, with possible contribution from the β-ARs and/or epidermal growth factor receptors. This review article will discuss the molecular mechanisms by which nicotine and its oncogenic derivatives such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine induce cell-cycle progression and promote tumor growth. A variety of signaling cascades are induced by nicotine through nAChRs, including the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, phosphoinositide 3-kinase/AKT pathway, and janus-activated kinase/STAT signaling. In addition, studies have shown that nAChR activation induces Src kinase in a β-arrestin-1-dependent manner, leading to the inactivation of Rb protein and resulting in the expression of E2F1-regulated proliferative genes. Such nAChR-mediated signaling events enhance the proliferation of cells and render them resistant to apoptosis induced by various agents. These observations highlight the role of nAChRs in promoting the growth and metastasis of tumors and raise the possibility of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612.
| | | |
Collapse
|
25
|
Xiong F, Jiang M, Huang Z, Chen M, Chen K, Zhou J, Yin L, Tang Y, Wang M, Ye L, Zhan Z, Duan J, Fu H, Zhang X. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells. Integr Cancer Ther 2013; 13:152-60. [PMID: 24105357 DOI: 10.1177/1534735413503544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM OF THE STUDY In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. METHODS A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. RESULTS Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. CONCLUSION Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic antitumor effects when combined with DDP. The mechanism of action of Ke is to induce cell cycle arrest and apoptosis by suppressing the PI3K/AKT pathway. Further research will be required to determine the mechanism of action behind the synergistic effect of Ke and DDP.
Collapse
Affiliation(s)
- Fei Xiong
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moon Y, Kwon Y, Yu S. How does ethanol induce apoptotic cell death of SK-N-SH neuroblastoma cells. Neural Regen Res 2013; 8:1853-62. [PMID: 25206494 PMCID: PMC4145973 DOI: 10.3969/j.issn.1673-5374.2013.20.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/16/2013] [Indexed: 12/03/2022] Open
Abstract
A body of evidence suggests that ethanol can lead to damage of neuronal cells. However, the mechanism underlying the ethanol-induced damage of neuronal cells remains unclear. The role of mitogen-activated protein kinases in ethanol-induced damage was investigated in SK-N-SH neuroblastoma cells. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay, DNA fragmentation detection, and flow cytometric analysis showed that ethanol induced apoptotic cell death and cell cycle arrest, characterized by increased caspase-3 activity, DNA fragmentation, nuclear disruption, and G1 arrest of cell cycle of the SK-N-SH neuroblastoma cells. In addition, western blot analysis indicated that ethanol induced a lasting increase in c-Jun N-terminal protein kinase activity and a transient increase in p38 kinase activity of the neuroblastoma cells. c-Jun N-terminal protein kinase or p38 kinase inhibitors significantly reduced the ethanol-induced cell death. Ethanol also increased p53 phosphorylation, followed by an increase in p21 tumor suppressor protein and a decrease in phospho-Rb (retinoblastoma) protein, leading to alterations in the expressions and activity of cyclin dependent protein kinases. Our results suggest that ethanol mediates apoptosis of SK-N-SH neuroblastoma cells by activating p53-related cell cycle arrest possibly through activation of the c-Jun N-terminal protein kinase-related cell death pathway.
Collapse
Affiliation(s)
- Yong Moon
- Department of Public Health Administration, Namseoul University, Chunan, Seoul 331-707, Korea
| | - Yongil Kwon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University, Seoul 134-701, Korea
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
27
|
Lee EJ, Lee SJ, Kim S, Cho SC, Choi YH, Kim WJ, Moon SK. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell Signal 2013; 25:2025-38. [PMID: 23770289 DOI: 10.1016/j.cellsig.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Inflammatory cytokines may be a critical component of epithelial cancer progression. We examined the role of interleukin (IL)-5 in the migration of bladder cancer cells. The expression of IL-5 and its receptor IL-5Rα was enhanced in patients with muscle invasive bladder cancers (MIBC), and then it was detected in bladder cancer cell lines 5637 and T-24. IL-5 increased migration and MMP-9 expression via activation of transcription factors NF-κB and AP-1, and induced activation of ERK1/2 and Jak-Stat signaling in both cells. Treatment with ERK1/2 inhibitor U0126 significantly inhibited induction of migration, MMP-9 expression, and activation of NF-κB and AP-1 in IL-5-treated cells. However, none of the Jak inhibitors affected the IL-5-induced migration of bladder cancer cells. Moreover, gene knockdown for IL-5Rα, using siRNA transfection, suppressed migration, ERK1/2 activation, MMP-9 expression, as well as the binding activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. Similar results were observed in βc siRNA (si-βc) transfected cells. Unexpectedly, IL-5 treatment resulted in significant induction of p21WAF1 in both cell lines. The p21WAF1-specific small interfering RNA inhibited IL-5-induced cell migration, ERK activity, MMP-9 expression, and activation of NF-κB and AP-1 in bladder cancer cells. The effects of IL-5-induced cell responses were confirmed by transfection of IL-5 gene, which demonstrated that p21WAF1 participates in the induction of cell migration, leading to an increase in ERK1/2-mediated MMP-9 expression through activation of NF-κB and AP-1 in IL-5-treated bladder cancer cells. These unexpected results provide a theoretical basis for the therapeutic targeting of IL-5 in bladder cancer.
Collapse
Affiliation(s)
- Eo-Jin Lee
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee SJ, Cho SC, Lee EJ, Kim S, Lee SB, Lim JH, Choi YH, Kim WJ, Moon SK. Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-κB) activation by inducing the up-regulation of p21(WAF1) protein expression. J Biol Chem 2012; 288:5539-52. [PMID: 23271730 DOI: 10.1074/jbc.m112.410233] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of inflammatory cytokine interleukin-20 (IL-20) has not yet been studied in cancer biology. Here, we demonstrated up-regulation of both IL-20 and IL-20R1 in muscle-invasive bladder cancer patients. The expressions of IL-20 and IL-20R1 were observed in bladder cancer 5637 and T-24 cells. We found that IL-20 significantly increased the expression of matrix metalloproteinase (MMP)-9 via binding activity of NF-κB and AP-1 in bladder cancer cells and stimulated the activation of ERK1/2, JNK, p38 MAPK, and JAK-STAT signaling. Among the pathways examined, only ERK1/2 inhibitor U0126 significantly inhibited IL-20-induced migration and invasion. Moreover, siRNA knockdown of IL-20R1 suppressed migration, invasion, ERK1/2 activation, and NF-κB-mediated MMP-9 expression induced by IL-20. Unexpectedly, the cell cycle inhibitor p21(WAF1) was induced by IL-20 treatment without altering cell cycle progression. Blockade of p21(WAF1) function by siRNA reversed migration, invasion, activation of ERK signaling, MMP-9 expression, and activation of NF-κB in IL-20-treated cells. In addition, IL-20 induced the activation of IκB kinase, the degradation and phosphorylation of IκBα, and NF-κB p65 nuclear translocation, which was regulated by ERK1/2. IL-20 stimulated the recruitment of p65 to the MMP-9 promoter region. Finally, the IL-20-induced migration and invasion of cells was confirmed by IL-20 gene transfection and by addition of anti-IL-20 antibody. This is the first report that p21(WAF1) is involved in ERK1/2-mediated MMP-9 expression via increased binding activity of NF-κB, which resulted in the induction of migration in IL-20/IL-20R1 dyad-induced bladder cancer cells. These unexpected results might provide a critical new target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Se-Jung Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk 380-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Souto-García A, Fernández-Somoano A, Pascual T, Álvarez-Avellón SM, Tardón A. Association of p21 Ser31Arg and p53 Arg72Pro polymorphisms with lung cancer risk in CAPUA study. LUNG CANCER-TARGETS AND THERAPY 2012; 3:69-78. [PMID: 28210126 DOI: 10.2147/lctt.s35287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The aim of this study was to investigate how Ser31Arg polymorphisms in p21 may modify lung cancer susceptibility. Because p21 is the major downstream mediator of p53, we analyzed the combined effect of two polymorphisms, p21 Ser31Arg and TP53 Arg72Pro, to elucidate whether polymorphic variants determine the risk of lung cancer. METHODS This was designed as a hospital-based case-control study, and included 675 cases and 675 control subjects matched by ethnicity, gender, and age. Genotypes were determined by polymerase chain reaction restriction fragment length polymorphism, and multivariate unconditional logistic regression was performed to analyze the results. RESULTS Subjects who carried the p21 Ser31Arg allele had a higher risk of lung cancer (adjusted odds ratio [OR] 1.38; 95% confidence interval [CI] 0.99-2.03). This risk was increased in men aged younger than 55 years (adjusted OR 2.35; 95% CI 1.00-5.51). Smokers had an increased risk of lung cancer (adjusted OR 2.23; 95% CI 1.24-4.02). Men younger than 55 years carrying risk alleles for both genes (p21 Ser31Arg and TP53 Arg72Pro) had an increased risk (adjusted OR 5.78; 95% CI 1.38-24.19), as did smokers with both risk alleles (adjusted OR 4.52; 95% CI 1.52-13.50). CONCLUSION The presence of both variant alleles increased the risk of developing lung cancer in men, particularly in smokers younger than 55 years.
Collapse
Affiliation(s)
- Ana Souto-García
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Ana Fernández-Somoano
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Teresa Pascual
- Pneumology Department, Cabueñes Hospital, Gijón, Asturias, Spain
| | - Sara M Álvarez-Avellón
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Adonina Tardón
- Molecular Epidemiolgy of Cancer Unit, University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain; Consortium for Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
30
|
Kudo T, Takeuchi K, Ebina YI, Nakazawa M. Inhibitory effects of trehalose on malignant melanoma cell growth: implications for a novel topical anticancer agent on the ocular surface. ISRN OPHTHALMOLOGY 2012; 2012:968493. [PMID: 24558596 PMCID: PMC3914279 DOI: 10.5402/2012/968493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/18/2012] [Indexed: 12/02/2022]
Abstract
Purpose. To investigate the inhibitory effects of trehalose on malignant melanoma cell growth. Methods. We cultured human malignant melanoma cells in a medium containing trehalose (control/2.5%/5.0%/7.5%/10.0%) and used the MTT assay to evaluate the growth activities. Subsequently, trehalose was topically instilled on subconjunctivally inoculated melanoma cells in F334/NJcl-rmu/rmu rats, followed by a histopathological evaluation of tumor growth. Using flow cytometry, we compared the distribution of the cell cycle, rate of apoptotic cells, and intracellular factors related to the cell cycle in cultured melanoma cells after trehalose treatment. Results. The MTT study showed that proliferation of melanoma cells was significantly inhibited by ≧ 5% of trehalose concentrations in the culture media. Subconjunctivally inoculated melanoma cell masses were significantly smaller in eyes administered trehalose as compared to controls. Flow cytometry analyses demonstrated that the trehalose groups had increased rates of G2/M phase cells and apoptotic cells in the cell culture. These cells also exhibited increased expressions of cell-cycle inhibitory factors. Conclusions. The current results show trehalose inhibits malignant melanoma cell growth by inducing G2/M cell cycle arrest and apoptosis, suggesting trehalose as a potential candidate for a topical agent to inhibit proliferation of malignant tumor cells of the ocular surface.
Collapse
Affiliation(s)
- Takashi Kudo
- Department of Opthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kimio Takeuchi
- Department of Opthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yu-Ichi Ebina
- Department of Opthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Mitsuru Nakazawa
- Department of Opthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
31
|
Hayashi H, Taniai E, Morita R, Yafune A, Suzuki K, Shibutani M, Mitsumori K. Threshold dose of liver tumor promoting effect of β-naphthoflavone in rats. J Toxicol Sci 2012; 37:517-26. [PMID: 22687991 DOI: 10.2131/jts.37.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To determine the threshold dose of β-Naphthoflavone (BNF) that induces hepatocellular tumor promoting effects, reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substance (TBARS) formation, and drug-metabolizing enzymes that protect against ROS generation, two-stage liver carcinogenesis model was used. Partial hepatectomized rats (n = 11 to 12) were fed diets containing 0, 0.03, 0.06, 0.125 or 0.25% BNF for 6 weeks after an intraperitoneal injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Histopathologically, glutathione S-transferase placental form (GST-P)-positive foci significantly increased in rats given 0.25% BNF. No marked changes in ROS production and TBARS contents were observed between the BNF treated and DEN alone groups. Real-time RT-PCR showed that the expression of Cyp1a1, Cyp1a2, Cyp1b1 and Nqo1 significantly increased in the groups given 0.03% BNF or more, but Ugt1a6, Akr7a3 and Gstm1 significantly increased in the groups given 0.125% BNF or more. Gpx2 and Yc2 significantly increased in the groups given 0.06% BNF or more and 0.25% BNF, respectively. Inflammation-related genes such as Ccl2, Mmp12, Serpine1 and Cox-2 significantly increased in the 0.25% BNF group. In immunohistochemistry, the number of cyclooxygenase-2 (COX-2)-positive cells increased in rats given 0.25% BNF. These results suggest that 0.25% BNF is the threshold dose for liver tumor promotion, and the fact that inflammation-related genes and COX-2 protein increased in the 0.25% BNF group strongly suggests that inflammation is involved in the liver tumor promoting effect of BNF in rats.
Collapse
Affiliation(s)
- Hitomi Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo Japan
| | | | | | | | | | | | | |
Collapse
|