1
|
Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, Aldubayan M, Alhowail A, Kaur S, Bhatia S, Al-Harrasi A, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Abdel Daim MM. Exploring the focal role of LRRK2 kinase in Parkinson's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32368-32382. [PMID: 35147886 DOI: 10.1007/s11356-022-19082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Satvinder Kaur
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy and Centre of Excellence for Biomaterials Engineering, AIMST University, Bedon, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistrty, Faculty of Pharmacy and Health Science, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mohamed M Abdel Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Medvedev SP, Malankhanova TB, Valetdinova KR, Zakian SM. Creation and Research of Cell Models of Hereditary Neurodegenerative Diseases Using Directed Genome Editing. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
A LRRK2 GTP Binding Inhibitor, 68, Reduces LPS-Induced Signaling Events and TNF-α Release in Human Lymphoblasts. Cells 2021; 10:cells10020480. [PMID: 33672296 PMCID: PMC7926966 DOI: 10.3390/cells10020480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson’s disease (PD) and contribute to sporadic PD. Common genetic variation in LRRK2 modifies susceptibility to immunological disorders including Crohn’s disease and leprosy. Previous studies have reported that LRRK2 is expressed in B lymphocytes and macrophages, suggesting a role for LRRK2 in immunological functions. In this study, we characterized the LRRK2 protein expression and phosphorylation using human lymphoblasts. Lipopolysaccharide (LPS), a proinflammatory agent, induced the increase of LRRK2 expression and kinase activities in human lymphoblasts in a time-dependent manner. Moreover, LPS activated the Toll-like receptor (TLR) signaling pathway, increased TRAF6/LRRK2 interaction, and elevated the phosphorylation levels of MAPK (JNK1/2, p38, and ERK1/2) and IkBα. Treatment with LRRK2 inhibitor 68 reduced LPS-induced TRAF6/LRRK2 interaction and MAPK and IkBα phosphorylation, thereby reducing TNF-α secretion. These results indicate that LRRK2 is actively involved in proinflammatory responses in human lymphoblasts, and inhibition of GTP binding by 68 results in an anti-inflammation effect against proinflammatory stimuli. These findings not only provide novel insights into the mechanisms of LRRK2-linked immune and inflammatory responses in B-cell-like lymphoblasts, but also suggest that 68 may also have potential therapeutic value for LRRK2-linked immunological disorders.
Collapse
|
4
|
Lin CH, Lin HY, Fang JM, Chen CC. A dual inhibitor targeting HMG-CoA reductase and histone deacetylase mitigates neurite degeneration in LRRK2-G2019S parkinsonism. Aging (Albany NY) 2020; 12:25581-25598. [PMID: 33231564 PMCID: PMC7803522 DOI: 10.18632/aging.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is among the most common neurodegenerative disorders, and its etiology involves both genetic and environmental factors. The leucine-rich repeat kinase (LRRK2) G2019S mutation is the most common genetic cause of familial and sporadic PD. Current treatment is limited to dopaminergic supplementation, as no disease-modifying therapy is available yet. Recent evidence reveals that HMG-CoA reductase (HMGR) inhibitors (statins) exert neuroprotection through anti-neuroinflammatory effects, and histone deacetylase (HDAC) inhibitors mitigate neurodegeneration by promoting the transcription of neuronal survival factors. We designed and synthesized a dual inhibitor, statin hydroxamate JMF3086, that simultaneously inhibits HMGR and HDAC, and examined its neuroprotective effects on LRRK2-G2019S parkinsonism. JMF3086 restored dopaminergic neuron loss in aged LRRK2-G2019S flies and rescued neurite degeneration in primary hippocampal and dopaminergic neurons isolated from transgenic LRRK2-G2019S mice. The molecular mechanisms included downregulation of ERK1/2 phosphorylation, increased anti-apoptotic Akt phosphorylation, and inhibition of GSK3β activity to maintain cytoskeletal stability in stably transfected LRRK2-G2019S SH-SY5Y human dopaminergic cells. JMF3086 also promoted a-tubulin acetylation and kinesin-1 expression, facilitating antegrade mitochondrial transport in axons. Our findings demonstrate that JMF3086 exerted beneficial effects on restoring LRRK2-G2019S neurite degeneration by maintaining microtubule stability. This dual-target compound may be a promising mechanism-based therapy for PD.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Yi Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Chow Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
5
|
Ning B, Gu C, Guo G, Xu J, Bibic A, He X, Liu H, Chen L, Wei Z, Duan W, Liu P, Lu H, van Zijl PC, Ross CA, Smith W, Hua J. Mutant G2019S-LRRK2 Induces Abnormalities in Arteriolar Cerebral Blood Volume in Mouse Brains: An MRI Study. NEURODEGENER DIS 2020; 20:65-72. [PMID: 33152738 PMCID: PMC7864856 DOI: 10.1159/000510387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease and the most common movement disorder characterized by motor impairments resulting from midbrain dopamine neuron loss. Abnormalities in small pial arteries and arterioles, which are the primary pathways of local delivery of nutrients and oxygen in brain tissue, have been reported in many neurodegenerative diseases including PD. Mutations in LRRK2 cause genetic PD and contribute to sporadic PD. The most common PD-linked mutation LRRK2 G2019S contributes 20-47% of genetic forms of PD in Caucasian populations. The human LRRK2 G2019S transgenic mouse model displays PD-like movement impairment and was used to identify novel LRRK2 inhibitors, which provides a useful model for studying microvascular abnormalities in PD. OBJECTIVES To investigate abnormalities in arteriolar cerebral blood volume (CBVa) in various brain regions using the inflow-based vascular-space occupancy (iVASO) MRI technique in LRRK2 mouse models of PD. METHODS Anatomical and iVASO MRI scans were performed in 5 female and 7 male nontransgenic (nTg), 3 female and 4 male wild-type (WT) LRRK2, and 5 female and 7 male G2019S-LRRK2 mice of 9 months of age. CBVa was calculated and compared in the substantia nigra (SN), olfactory cortex, and prefrontal cortex. RESULTS Compared to nTg mice, G2019S-LRRK2 mice showed decreased CBVa in the SN, but increased CBVa in the olfactory and prefrontal cortex in both male and female groups, whereas WT-LRRK2 mice showed no change in CBVa in the SN (male and female), the olfactory (female), and prefrontal (female) cortex, but a slight increase in CBVa in the olfactory and prefrontal cortex in the male group only. CONCLUSIONS Alterations in the blood volume of small arteries and arterioles (CBVa) were detected in the G2019S-LRRK2 mouse model of PD. The opposite changes in CBVa in the SN and the cortex indicate that PD pathology may have differential effects in different brain regions. Our results suggest the potential value of CBVa as a marker for clinical PD studies.
Collapse
Affiliation(s)
- Bo Ning
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Chunming Gu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Gongbo Guo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Xiaofei He
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Hongshuai Liu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Lin Chen
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Zhiliang Wei
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Peter C.M. van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wanli Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Univesity School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Drosophila Models of Sporadic Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19113343. [PMID: 30373150 PMCID: PMC6275057 DOI: 10.3390/ijms19113343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common cause of movement disorders and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. It is increasingly recognized as a complex group of disorders presenting widely heterogeneous symptoms and pathology. With the exception of the rare monogenic forms, the majority of PD cases result from an interaction between multiple genetic and environmental risk factors. The search for these risk factors and the development of preclinical animal models are in progress, aiming to provide mechanistic insights into the pathogenesis of PD. This review summarizes the studies that capitalize on modeling sporadic (i.e., nonfamilial) PD using Drosophilamelanogaster and discusses their methodologies, new findings, and future perspectives.
Collapse
|
7
|
Yang D, Thomas JM, Li T, Lee Y, Liu Z, Smith WW. The Drosophila hep pathway mediates Lrrk2-induced neurodegeneration. Biochem Cell Biol 2017; 96:441-449. [PMID: 29268033 DOI: 10.1139/bcb-2017-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the pathogenesis of Parkinson's disease (PD) remains unclear, mutations in leucine-rich repeat kinase 2 (Lrrk2) are among the major causes of familial PD. Most of these mutations disrupt Lrrk2 kinase and (or) GTPase domain function, resulting in neuronal degeneration. However, the signal pathways underlying Lrrk2-induced neuronal degeneration are not fully understood. There is an expanding body of evidence that suggests a link between Lrrk2 function and MAP kinase (MAPK) cascades. To further investigate this link in vivo, genetic RNAi screens of the MAPK pathways were performed in a Drosophila model to identify genetic modifier(s) that can suppress G2019S-Lrrk2-induced PD-like phenotypes. The results revealed that the knockdown of hemipterous (hep, or JNKK) increased fly survival time, improved locomotor function, and reduced loss of dopaminergic neurons in G2019S-Lrrk2 transgenic flies. Expression of the dominant-negative allele of JNK (JNK-DN), a kinase that is downstream of hep in G2019S-Lrrk2 transgenic flies, elicited a similar effect. Moreover, treatment with the JNK inhibitor SP600125 partially reversed the G2019S-Lrrk2-induced loss of dopaminergic neurons. These results indicate that the hep pathway plays an important role in Lrrk2-linked Parkinsonism in flies. These studies provide new insights into the molecular mechanisms underlying Lrrk2-linked PD pathogenesis and aid in identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Dejun Yang
- a Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph M Thomas
- b Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tianxia Li
- b Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Youngseok Lee
- c Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Korea
| | - Zhaohui Liu
- d Department of Human Anatomy, Soochow University School of Medicine, Suzhou, Jiangsu, 215123, China
| | - Wanli W Smith
- a Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Thomas JM, Li T, Yang W, Xue F, Fishman PS, Smith WW. 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Front Aging Neurosci 2017; 8:337. [PMID: 28119604 PMCID: PMC5222795 DOI: 10.3389/fnagi.2016.00337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/26/2016] [Indexed: 11/27/2022] Open
Abstract
Leucine-rich repeat kinase 2 is a large protein with implications in genetic and sporadic causes of Parkinson's disease. The physiological functions of LRRK2 are largely unknown. In this report, we investigated whether LRRK2 alters neural transport using live-cell imaging techniques and human neuroblastoma SH-SY5Y cells. Our results demonstrated that expression of the PD-linked mutant, LRRK2-R1441C, induced mitochondrial, and lysosomal transport defects in neurites of SH-SY5Y cells. Most importantly, recently identified GTP-binding inhibitors, 68 and FX2149, can reduce LRRK2 GTP-binding activity and attenuates R1441C-induced mitochondrial and lysosomal transport impairments. These results provide direct evidence and an early mechanism for neurite injury underlying LRRK2-induced neurodegeneration. This is the first report to show that LRRK2 GTP-binding activity plays a critical role during neurite transport, suggesting inhibition of LRRK2 GTP-binding could be a potential novel strategy for PD intervention.
Collapse
Affiliation(s)
- Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Wei Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of MedicineBaltimore, MD, USA; Neurology Service, VA Maryland Healthcare SystemBaltimore, MD, USA
| | - Wanli W Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
9
|
De Rose F, Corda V, Solari P, Sacchetti P, Belcari A, Poddighe S, Kasture S, Solla P, Marrosu F, Liscia A. Drosophila Mutant Model of Parkinson's Disease Revealed an Unexpected Olfactory Performance: Morphofunctional Evidences. PARKINSON'S DISEASE 2016; 2016:3508073. [PMID: 27648340 PMCID: PMC5018337 DOI: 10.1155/2016/3508073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases characterized by the clinical triad: tremor, akinesia, and rigidity. Several studies have suggested that PD patients show disturbances in olfaction as one of the earliest, nonspecific nonmotor symptoms of disease onset. We sought to use the fruit fly Drosophila melanogaster as a model organism to explore olfactory function in LRRK loss-of-function mutants, which was previously demonstrated to be a useful model for PD. Surprisingly, our results showed that the LRRK mutant, compared to the wild flies, presents a dramatic increase in the amplitude of the electroantennogram responses and this is coupled with a higher number of olfactory sensilla. In spite of the above reported results, the behavioural response to olfactory stimuli in mutant flies is impaired compared to that obtained in wild type flies. Thus, behaviour modifications and morphofunctional changes in the olfaction of LRRK loss-of-function mutants might be used as an index to explore the progression of parkinsonism in this specific model, also with the aim of studying and developing new treatments.
Collapse
Affiliation(s)
| | - Valentina Corda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrizia Sacchetti
- Department of Agricultural Biotechnology, Section of Plant Protection, University of Florence, Firenze, Italy
| | - Antonio Belcari
- Department of Agricultural Biotechnology, Section of Plant Protection, University of Florence, Firenze, Italy
| | - Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
10
|
Leung C, Jia Z. Mouse Genetic Models of Human Brain Disorders. Front Genet 2016; 7:40. [PMID: 27047540 PMCID: PMC4803727 DOI: 10.3389/fgene.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.
Collapse
Affiliation(s)
- Celeste Leung
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, TorontoON, Canada; Program in Physiology, University of Toronto, TorontoON, Canada
| |
Collapse
|
11
|
Liu J, Li T, Thomas JM, Pei Z, Jiang H, Engelender S, Ross CA, Smith WW. Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models. Hum Mol Genet 2016; 25:672-80. [PMID: 26744328 DOI: 10.1093/hmg/ddv504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 11/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinsonism with pleomorphic pathology including deposits of aggregated protein and neuronal degeneration. The pathogenesis of LRRK2-linked Parkinson's disease (PD) is not fully understood. Here, using co-immunoprecipitation, we found that LRRK2 interacted with synphilin-1 (SP1), a cytoplasmic protein that interacts with α-synuclein and has implications in PD pathogenesis. LRRK2 interacted with the N-terminus of SP1 whereas SP1 predominantly interacted with the C-terminus of LRRK2, including kinase domain. Co-expression of SP1 with LRRK2 increased LRRK2-induced cytoplasmic aggregation in cultured cells. Moreover, SP1 also attenuated mutant LRRK2-induced toxicity and reduced LRRK2 kinase activity in cultured cells. Knockdown of SP1 by siRNA enhanced LRRK2 neuronal toxicity. In vivo Drosophila studies, co-expression of SP1 and mutant G2019S-LRRK2 in double transgenic Drosophila increased survival and improved locomotor activity. Expression of SP1 protects against G2019S-LRRK2-induced dopamine neuron loss and reduced LRRK2 phosphorylation in double transgenic fly brains. Our findings demonstrate that SP1 attenuates mutant LRRK2-induced PD-like phenotypes and plays a neural protective role.
Collapse
Affiliation(s)
- Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | - Zhong Pei
- Division of Neurobiology, Department of Psychiatry
| | | | - Simone Engelender
- Department of Pharmacology, The B. Rappaport Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Departments of Neuroscience, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA,
| |
Collapse
|
12
|
De Rose F, Marotta R, Poddighe S, Talani G, Catelani T, Setzu MD, Solla P, Marrosu F, Sanna E, Kasture S, Acquas E, Liscia A. Functional and Morphological Correlates in the Drosophila LRRK2 loss-of-function Model of Parkinson's Disease: Drug Effects of Withania somnifera (Dunal) Administration. PLoS One 2016; 11:e0146140. [PMID: 26727265 PMCID: PMC4699764 DOI: 10.1371/journal.pone.0146140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson's disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared to WT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is required.
Collapse
Affiliation(s)
| | - Roberto Marotta
- Nanochemistry Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council (CNR), Monserrato, Cagliari, Italy
| | - Tiziano Catelani
- Nanochemistry Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Li T, He X, Thomas JM, Yang D, Zhong S, Xue F, Smith WW. A novel GTP-binding inhibitor, FX2149, attenuates LRRK2 toxicity in Parkinson's disease models. PLoS One 2015; 10:e0122461. [PMID: 25816252 PMCID: PMC4376719 DOI: 10.1371/journal.pone.0122461] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/12/2015] [Indexed: 12/05/2022] Open
Abstract
Leucine-rich repeat kinase-2 (LRRK2), a cytoplasmic protein containing both GTP binding and kinase activities, has emerged as a highly promising drug target for Parkinson’s disease (PD). The majority of PD-linked mutations in LRRK2 dysregulate its GTP binding and kinase activities, which may contribute to neurodegeneration. While most known LRRK2 inhibitors are developed to target the kinase domain, we have recently identified the first LRRK2 GTP binding inhibitor, 68, which not only inhibits LRRK2 GTP binding and kinase activities with high potency in vitro, but also reduces neurodegeneration. However, the in vivo effects of 68 are low due to its limited brain penetration. To address this problem, we reported herein the design and synthesis of a novel analog of 68, FX2149, aimed at increasing the in vivo efficacy. Pharmacological characterization of FX2149 exhibited inhibition of LRRK2 GTP binding activity by ~90% at a concentration of 10 nM using in vitro assays. Furthermore, FX2149 protected against mutant LRRK2-induced neurodegeneration in SH-SY5Y cells at 50-200 nM concentrations. Importantly, FX2149 at 10 mg/kg (i.p.) showed significant brain inhibition efficacy equivalent to that of 68 at 20 mg/kg (i.p.), determined by mouse brain LRRK2 GTP binding and phosphorylation assays. Furthermore, FX2149 at 10 mg/kg (i.p.) attenuated lipopolysaccharide (LPS)-induced microglia activation and LRRK2 upregulation in a mouse neuroinflammation model comparable to 68 at 20 mg/kg (i.p.). Our results highlight a novel GTP binding inhibitor with better brain efficacy, which represents a new lead compound for further understanding PD pathogenesis and therapeutic studies.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
| | - Xinhua He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Joseph M. Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
| | - Shijun Zhong
- School of Life Science and Biotechnology, Dalian University of Technology, Liaoning, China
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
- * E-mail: (FX); (WWS)
| | - Wanli W. Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States of America
- * E-mail: (FX); (WWS)
| |
Collapse
|
14
|
Li T, Yang D, Zhong S, Thomas JM, Xue F, Liu J, Kong L, Voulalas P, Hassan HE, Park JS, MacKerell AD, Smith WW. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. Hum Mol Genet 2014; 23:6212-22. [PMID: 24993787 DOI: 10.1093/hmg/ddu341] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. LRRK2 contains Guanosine-5'-triphosphate (GTP) binding, GTPase and kinase activities that have been implicated in the neuronal degeneration of PD pathogenesis, making LRRK2, a potential drug target. To date, there is no disease-modifying drug to slow the neuronal degeneration of PD and no published LRRK2 GTP domain inhibitor. Here, the biological functions of two novel GTP-binding inhibitors of LRRK2 were examined in PD cell and mouse models. Through a combination of computer-aided drug design (CADD) and LRRK2 bio-functional screens, two novel compounds, 68: and 70: , were shown to reduce LRRK2 GTP binding and to inhibit LRRK2 kinase activity in vitro and in cultured cell assays. Moreover, these two compounds attenuated neuronal degeneration in human SH-SY5Y neuroblastoma cells and mouse primary neurons expressing mutant LRRK2 variants. Although both compounds inhibited LRRK2 kinase activity and reduced neuronal degeneration, solubility problems with 70: prevented further testing in mice. Thus, only 68: was tested in a LRRK2-based lipopolysaccharide (LPS)-induced pre-inflammatory mouse model. 68: reduced LRRK2 GTP-binding activity and kinase activity in brains of LRRK2 transgenic mice after intraperitoneal injection. Moreover, LPS induced LRRK2 upregulation and microglia activation in mouse brains. These findings suggest that disruption of GTP binding to LRRK2 represents a potential novel therapeutic approach for PD intervention and that these novel GTP-binding inhibitors provide both tools and lead compounds for future drug development.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shijun Zhong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Lingbo Kong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Pamela Voulalas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jae-Sung Park
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Gene and MicroRNA transcriptome analysis of Parkinson's related LRRK2 mouse models. PLoS One 2014; 9:e85510. [PMID: 24427314 PMCID: PMC3888428 DOI: 10.1371/journal.pone.0085510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of genetic Parkinson’s disease (PD). The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA) transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO) mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT) or the PD-associated R1441G mutation (hLRRK2-R1441G). We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold). By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin) and miRNAs (e.g., miR-16, miR-25). Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.
Collapse
|
16
|
Bichler Z, Lim HC, Zeng L, Tan EK. Non-motor and motor features in LRRK2 transgenic mice. PLoS One 2013; 8:e70249. [PMID: 23936174 PMCID: PMC3728021 DOI: 10.1371/journal.pone.0070249] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Background Non-motor symptoms are increasingly recognized as important features of Parkinson’s disease (PD). LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models. Objective Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms. Methodology We investigated the onset of motor and non-motor phenotypes on the LRRK2R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction), and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls. Conclusions LRRK2R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.
Collapse
Affiliation(s)
- Zoë Bichler
- Behavioral Neuroscience Laboratory, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Program in Neuroscience and Behavioral Disorders, Singapore, Singapore
- * E-mail: (ZB); (EKT)
| | - Han Chi Lim
- Neural Stem Cell Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Li Zeng
- Duke-NUS Graduate Medical School, Program in Neuroscience and Behavioral Disorders, Singapore, Singapore
- Neural Stem Cell Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Eng King Tan
- Behavioral Neuroscience Laboratory, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Program in Neuroscience and Behavioral Disorders, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- * E-mail: (ZB); (EKT)
| |
Collapse
|
17
|
Abstract
AIMS The pathogenesis of obesity remains incompletely understood. Drosophila have conserved neuroendocrine and digestion systems with human and become an excellent system for studying energy homeostasis. Here, we reported a novel obesity Drosophila model, in which expression of human protein, synphilin-1 (SP1), in neurons fosters positive energy balance. SUBJECTS AND METHODS To further understand the actions of SP1 in energy balance control, the upstream activation sequence UAS/GAL4 system was used to generate human SP1 transgenic Drosophila. We characterized a human SP1 transgenic Drosophila by assessing SP1 expression, fat lipid deposition, food intake and fly locomotor activity to determine the major behavioral changes and their consequences in the development of the obesity-like phenotype. RESULTS Overexpression of SP1 in neurons, but not peripheral cells, increased the body weight of flies compared with that of non-transgenic controls. SP1 increased food intake but did not affect locomotor activity. SP1 increased the levels of triacylglycerol, and the size of fat body cells and lipid droplets, indicating that SP1 increased lipid-fat disposition. Survival studies showed that SP1 transgenic flies were more resistant to food deprivation. SP1 regulated lipin gene expression that may participate in SP1-induced fat deposition and starvation resistance. CONCLUSION These studies demonstrate that SP1 expression affects energy homeostasis in ways that enhance positive energy balance and provide a useful obesity model for future pathogenesis and therapeutic studies.
Collapse
|
18
|
Kramer T, Lo Monte F, Göring S, Okala Amombo GM, Schmidt B. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models. ACS Chem Neurosci 2012; 3:151-60. [PMID: 22860184 PMCID: PMC3369800 DOI: 10.1021/cn200117j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/18/2012] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Several single gene mutations have been linked to this disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) indicate LRRK2 as promising therapeutic target for the treatment of PD. LRRK2 mutations were observed in sporadic as well as familial PD patients and have been investigated intensively. LRRK2 is a large and complex protein, with multiple enzymatic and protein-interaction domains, each of which is effected by mutations. The most common mutation in PD patients is G2019S. Several LRRK2 inhibitors have been reported already, although the crystal structure of LRRK2 has not yet been determined. This review provides a summary of known LRRK2 inhibitors and will discuss recent in vitro and in vivo results of these inhibitors.
Collapse
Affiliation(s)
| | | | - Stefan Göring
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ghislaine Marlyse Okala Amombo
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf - Institute
of Organic Chemistry
and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Rudenko IN, Chia R, Cookson MR. Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease? BMC Med 2012; 10:20. [PMID: 22361010 PMCID: PMC3308210 DOI: 10.1186/1741-7015-10-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/23/2012] [Indexed: 11/12/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial Parkinson's disease (PD). Variation around the LRRK2 locus also contributes to the risk of sporadic PD. The LRRK2 protein contains a central catalytic region, and pathogenic mutations cluster in the Ras of complex protein C terminus of Ras of complex protein (mutations N1437H, R1441G/C and Y1699C) and kinase (G2019S and I2020T) domains. Much attention has been focused on the kinase domain, because kinase-dead versions of mutant LRRK2 are less toxic than kinase-active versions of the same proteins. Furthermore, kinase inhibitors may be able to mimic this effect in mouse models, although the currently tested inhibitors are not completely specific. In this review, we discuss the recent progress in the development of specific LRRK2 kinase inhibitors. We also discuss non-kinase-based therapeutic strategies for LRRK2-associated PD as it is possible that different approaches may be needed for different mutations.
Collapse
Affiliation(s)
- Iakov N Rudenko
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Room 1A-116, Bethesda, MD 20892-3707, USA
| | | | | |
Collapse
|
20
|
Dorval V, Hébert SS. LRRK2 in Transcription and Translation Regulation: Relevance for Parkinson's Disease. Front Neurol 2012; 3:12. [PMID: 22363314 PMCID: PMC3276974 DOI: 10.3389/fneur.2012.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/17/2012] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of both familial and sporadic PD. One critical question is how PD-associated LRRK2 mutations cause neurodegeneration. Here, we discuss recent findings related to LRRK2-mediated regulation of gene expression and translation and provide a critical assessment of the current models that are used to address the impact of LRRK2 on the transcriptome. A better understanding of these mechanisms could provide important new clues into the function of LRRK2 during both normal and pathological conditions.
Collapse
Affiliation(s)
- Véronique Dorval
- Centre de Recherche du CHUQ, Axe Neurosciences, Université Laval Québec, QC, Canada
| | | |
Collapse
|