1
|
Adel Alawadi H, Andarzbakhsh K, Rastegari A, Mohammadi Z, Aghsami M, Saadatpour F. Chitosan-Aloe Vera Composition Loaded with Zinc Oxide Nanoparticles for Wound Healing: In Vitro and In Vivo Evaluations. IET Nanobiotechnol 2024; 2024:6024411. [PMID: 38863973 PMCID: PMC11111295 DOI: 10.1049/2024/6024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Global concerns due to the negative impacts of untreatable wounds, as well as the growing population of these patients, emphasize the critical need for advancements in the wound healing materials and techniques. Nanotechnology offers encouraging avenues for improving wound healing process. In this context, nanoparticles (NPs) and certain natural materials, including chitosan (CS) and aloe vera (AV), have demonstrated the potential to promote healing effects. The objective of this investigation is to assess the effect of novel fabricated nanocomposite gel containing CS, AV, and zinc oxide NPs (ZnO NPs) on the wound healing process. The ZnO NPs were synthesized and characterized by X-ray diffraction and electron microscopy. Then, CS/AV gel with different ratios was prepared and loaded with ZnO NPs. The obtained formulations were characterized in vitro based on an antimicrobial study, and the best formulations were used for the animal study to assess their wound healing effects in 21 days. The ZnO NPs were produced with an average 33 nm particle size and exhibited rod shape morphology. Prepared gels were homogenous with good spreadability, and CS/AV/ZnO NPs formulations showed higher antimicrobial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The wound healing findings showed significant wound area reduction in the CS/AV/ZnO NPs group compared to negative control at day 21. Histopathological assessment revealed the advantageous impact of this formulation across various stages of the wound healing process, including collagen deposition (CS/AV/ZnO NPs (2 : 1), 76.6 ± 3.3 compared to negative control, 46.2 ± 3.7) and epitheliogenesis (CS/AV/ZnO NPs (2 : 1), 3 ± 0.9 compared to negative control, 0.8 ± 0.8). CS/AV gel-loaded ZnO NPs showed significant effectiveness in wound healing and would be suggested as a promising formulation in the wound healing process. Further assessments are warranted to ensure the robustness of our findings.
Collapse
Affiliation(s)
- Hasanain Adel Alawadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamyab Andarzbakhsh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
An J, Lee H, Lee S, Song Y, Kim J, Park IH, Kong H, Kim K. Modulation of Pro-inflammatory and Anti-inflammatory Cytokines in the Fat by an Aloe Gel-based Formula, QDMC, Is Correlated with Altered Gut Microbiota. Immune Netw 2021; 21:e15. [PMID: 33996171 PMCID: PMC8099612 DOI: 10.4110/in.2021.21.e15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Abnormal inflammatory responses are closely associated with intestinal microbial dysbiosis. Oral administration of Qmatrix-diabetes-mellitus complex (QDMC), an Aloe gel-based formula, has been reported to improve inflammation in type 2 diabetic mice; however, the role of the gut microbiota in ameliorating efficacy of QDMC remains unclear. We investigated the effect of QDMC on the gut microbiota in a type 2 diabetic aged mouse model that was administered a high-fat diet. Proinflammatory (TNF-α and IL-6) and anti-inflammatory (IL-4 and IL-10) cytokine levels in the fat were normalized via oral administration of QDMC, and relative abundances of Bacteroides, Butyricimonas, Ruminococcus, and Mucispirillum were simultaneously significantly increased. The abundance of these bacteria was correlated to the expression levels of cytokines. Our findings suggest that the immunomodulatory activity of QDMC is partly mediated by the altered gut microbiota composition.
Collapse
Affiliation(s)
- Jinho An
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Sungwon Lee
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Jiyeon Kim
- Climacteric Natural Products Research Institute, Sahmyook University, Seoul 01795, Korea
| | - Il Ho Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Hyunseok Kong
- Climacteric Natural Products Research Institute, Sahmyook University, Seoul 01795, Korea.,College of Animal Biotechnology and Resource, Sahmyook University, Seoul 01795, Korea
| | - Kyungjae Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
3
|
Sun Z, Tang Z, Yang X, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135608. [PMID: 31767314 DOI: 10.1016/j.scitotenv.2019.135608] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
As one of the widely used anthropogenic food additives, 3-tert-butyl-4-hydroxyanisole (3-BHA) has been found to perturb adipogenesis in vitro and induce lipid accumulation in some strains of oleaginous microalgae. The impact of this chemical on adipocyte development and lipid metabolism in mammals remains to be elucidated. In this study, we performed 18-week oral administration of 3-BHA to male C57BL/6J mice with normal diet (ND) or high-fat diet (HFD) and investigated its impacts on adipogenesis and lipid accumulation in vivo. The results indicated that long-term exposure to 3-BHA impacted the mouse body weight gain, white adipose tissue accumulation, and plasma lipids through transcriptional regulation of adipogenesis, lipid metabolism, and adipocyte endocrine function, while glucose metabolism and insulin sensitivity remained unaffected. HFD-fed mice responded to 3-BHA stimulation differently from ND-fed animals, suggesting potential risks for the human burden of 3-BHA in lean and obese subjects. The findings herein validate 3-BHA as an environmental obesogen, and more caution is recommended for its authorized use as a food antioxidant against lipid rancidity.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Tang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82 Örebro, Sweden; UN Environment (UNEP), Chemicals Branch, CH-1219 Châtelaine (GE), Switzerland
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rahoui W, Merzouk H, El Haci IA, Bettioui R, Azzi R, Benali M. Beneficial effects of Aloe vera gel on lipid profile, lipase activities and oxidant/antioxidant status in obese rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Lee Y, Kim J, An J, Lee H, Kong H, Song Y, Shin E, Do SG, Lee CK, Kim K. Aloe QDM complex enhances specific cytotoxic T lymphocyte killing in vivo in metabolic disease mice. Biosci Biotechnol Biochem 2016; 81:595-603. [PMID: 27884090 DOI: 10.1080/09168451.2016.1258986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed spontaneous diet-induced metabolic disease in mice by feeding them a high-fat diet for 23 weeks and administered Aloe QDM complex for 16 weeks to examine its restorative effect on immune disorders and metabolic syndrome. A series of immune functional assays indicated Aloe QDM complex enhanced lymphocyte proliferation and antigen-specific immunity as determined by the restored functions of cytotoxic T lymphocytes (CTL) and IgG production. The elevated serum TNF-α level was also regulated by Aloe QDM complex treatment, which suggested its complex therapeutic potential. As for metabolic phenotypes, oral administration of Aloe QDM complex significantly improved diabetic symptoms, including high fasting glucose levels and glucose tolerance, and distinctly alleviated lipid accumulation in adipose and hepatic tissue. The simultaneous restoration of Aloe QDM complex on metabolic syndrome and host immune dysfunction, especially on the specific CTL killing was first elucidated in our study.
Collapse
Affiliation(s)
- Youngjoo Lee
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| | - Jiyeon Kim
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| | - Jinho An
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| | - Heetae Lee
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| | - Hyunseok Kong
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| | | | - Eunju Shin
- b Wellness R&D Center, Univera, Inc. , Seoul , Korea
| | - Seon-Gil Do
- b Wellness R&D Center, Univera, Inc. , Seoul , Korea
| | - Chong-Kil Lee
- c College of Pharmacy, Chungbuk National University , Cheongju , Korea
| | - Kyungjae Kim
- a College of Pharmacy, Sahmyook University , Seoul , Korea
| |
Collapse
|
6
|
Suksomboon N, Poolsup N, Punthanitisarn S. Effect ofAloe veraon glycaemic control in prediabetes and type 2 diabetes: a systematic review and meta-analysis. J Clin Pharm Ther 2016; 41:180-8. [DOI: 10.1111/jcpt.12382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- N. Suksomboon
- Department of Pharmacy; Faculty of Pharmacy; Mahidol University; Bangkok Thailand
| | - N. Poolsup
- Department of Pharmacy; Faculty of Pharmacy; Silpakorn University; Nakhon-Pathom Thailand
| | - S. Punthanitisarn
- Department of Pharmacy; Faculty of Pharmacy; Mahidol University; Bangkok Thailand
| |
Collapse
|
7
|
Lessons from mouse models of high-fat diet-induced NAFLD. Int J Mol Sci 2013; 14:21240-57. [PMID: 24284392 PMCID: PMC3856002 DOI: 10.3390/ijms141121240] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.
Collapse
|
8
|
Choi HC, Kim SJ, Son KY, Oh BJ, Cho BL. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: randomized controlled trial. Nutrition 2013; 29:1110-4. [PMID: 23735317 DOI: 10.1016/j.nut.2013.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The metabolic effects of an aloe vera gel complex (Aloe QDM complex) on people with prediabetes or early diabetes mellitus (DM) are unknown. The goal of this study was to determine the effects of Aloe QDM complex on body weight, body fat mass (BFM), fasting blood glucose (FBG), fasting serum insulin, and Homeostasis Model of Assessment - Insulin Resistance (HOMA-IR) in obese individuals with prediabetes or early DM who were not on diabetes medications. METHODS Participants (n = 136) were randomly assigned to an intervention or a control group and evaluated at baseline and at 4 and 8 wk. RESULTS The study lost six participants in the control group and eight in the intervention group. At 8 wk, body weight (P = 0.02) and BFM (P = 0.03) were significantly lower in the intervention group. At 4 wk, serum insulin level (P = 0.04) and HOMA-IR (P = 0.047) were lower in the intervention group; they also were lower at 8 wk but with borderline significance (P = 0.09; P = 0.08, respectively). At 8 wk, FBG tended to decrease in the intervention group (P = 0.02), but the between-group difference was not significant (P = 0.16). CONCLUSION In obese individuals with prediabetes or early untreated DM, Aloe QDM complex reduced body weight, BFM, and insulin resistance.
Collapse
Affiliation(s)
- Ho-Chun Choi
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | |
Collapse
|
9
|
Shin S, Kim S, Oh HE, Kong H, Shin E, Do SG, Jo TH, Park YI, Lee CK, Kim K. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet. Immune Netw 2012; 12:96-103. [PMID: 22916045 PMCID: PMC3422715 DOI: 10.4110/in.2012.12.3.96] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 01/18/2023] Open
Abstract
Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated whether the Aloe QDM complex could improve metabolic disorders related to blood glucose levels and insulin resistance. Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of Aloe QDM complex or pioglitazone (PGZ) or metformin (Met) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Dietary Aloe QDM complex lowered body weight, fasting blood glucose, plasma insulin, and leptin levels, and markedly reduced the impairment of glucose tolerance in obese mice. Also, Aloe QDM complex significantly enhanced plasma adiponectin levels and insulin sensitivity via AMPK activity in muscles. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and scavenger receptors in white adipose tissue (WAT). Dietary Aloe QDM complex reduces obesity-induced glucose tolerance not only by suppressing PPARγ/LXRα but also by enhancing AMPK activity in the WAT and muscles, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.
Collapse
Affiliation(s)
- Seulmee Shin
- College of Pharmacy, SahmYook University, Seoul 139-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee GS, Yim D, Cheong JH, Kang TJ. Then-Hexane, ethylacetate, and butanol fractions from Hydnocarpi Semen enhanced wound healing in a mice ulcer model. Immunopharmacol Immunotoxicol 2012; 34:968-74. [DOI: 10.3109/08923973.2012.681328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Lynch B, Simon R, Roberts A. In vitro and in vivo assessment of the genotoxic activity of aloesin. Regul Toxicol Pharmacol 2011; 61:215-21. [DOI: 10.1016/j.yrtph.2011.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/30/2022]
|
12
|
Lynch B, Simon R, Roberts A. Subchronic toxicity evaluation of aloesin. Regul Toxicol Pharmacol 2011; 61:161-71. [DOI: 10.1016/j.yrtph.2011.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
|
13
|
Shin E, Shin S, Kong H, Lee S, Do SG, Jo TH, Park YI, Lee CK, Hwang IK, Kim K. Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice. Immune Netw 2011; 11:107-13. [PMID: 21637388 PMCID: PMC3100521 DOI: 10.4110/in.2011.11.2.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/15/2023] Open
Abstract
Background Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM complex down-regulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-1β and -6) and HIF1α mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-κB p65 from the cytosol in the WAT. Conclusion Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.
Collapse
Affiliation(s)
- Eunju Shin
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shin E, Shim KS, Kong H, Lee S, Shin S, Kwon J, Jo TH, Park YI, Lee CK, Kim K. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice. Immune Netw 2011; 11:59-67. [PMID: 21494375 PMCID: PMC3072676 DOI: 10.4110/in.2011.11.1.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 12/15/2022] Open
Abstract
Background Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-1β, -6, -12, TNF-α) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of PPARγ/LXRα and 11β-HSD1 both in the liver and WAT. Conclusion Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on PPARγ and 11β-HSD1 expression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.
Collapse
|