1
|
Cha SH, Hwang Y, Heo SJ, Jun HS. Diphlorethohydroxycarmalol Attenuates Palmitate-Induced Hepatic Lipogenesis and Inflammation. Mar Drugs 2020; 18:E475. [PMID: 32962167 PMCID: PMC7551772 DOI: 10.3390/md18090475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease, encompassing a range of conditions caused by lipid deposition within liver cells, and is also associated with obesity and metabolic diseases. Here, we investigated the protective effects of diphlorethohydroxycarmalol (DPHC), which is a polyphenol isolated from an edible seaweed, Ishige okamurae, on palmitate-induced lipotoxicity in the liver. DPHC treatment repressed palmitate-induced cytotoxicity, triglyceride content, and lipid accumulation. DPHC prevented palmitate-induced mRNA and protein expression of SREBP (sterol regulatory element-binding protein) 1, C/EBP (CCAAT-enhancer-binding protein) α, ChREBP (carbohydrate-responsive element-binding protein), and FAS (fatty acid synthase). In addition, palmitate treatment reduced the expression levels of phosphorylated AMP-activated protein kinase (AMPK) and sirtuin (SIRT)1 proteins, and DPHC treatment rescued this reduction. Moreover, DPHC protected palmitate-induced liver toxicity and lipogenesis, as well as inflammation, and enhanced AMPK and SIRT1 signaling in zebrafish. These results suggest that DPHC possesses protective effects against palmitate-induced toxicity in the liver by preventing lipogenesis and inflammation. DPHC could be used as a potential therapeutic or preventive agent for fatty liver diseases.
Collapse
Affiliation(s)
- Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Chungcheongnam-do 31962, Korea
| | - Yongha Hwang
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21999, Korea;
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Korea;
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hee-Sook Jun
- Gachon Medical and Convergence Institute, Gachon Gil Medical Center, Incheon 21999, Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- College of Pharmacy, Gachon University, Incheon 21999, Korea
| |
Collapse
|
2
|
Kwon OY, Lee SH. Ameliorating Activity of Ishige okamurae on the Amyloid Beta-Induced Cognitive Deficits and Neurotoxicity through Regulating ERK, p38 MAPK, and JNK Signaling in Alzheimer's Disease-Like Mice Model. Mol Nutr Food Res 2020; 64:e1901220. [PMID: 32437593 DOI: 10.1002/mnfr.201901220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SCOPE Alzheimer's disease (AD) is associated with amyloid beta peptide (Aβ25-35 ) accumulation in brains, which induces neurotoxicity and cognitive impairment. The effects of Ishige okamurae, an edible brown algae, on Aβ25-35 -induced cognitive impairment and neuronal toxicity is investigated. The aim of this study is to determine the molecular mechanisms responsible for I. okamurae extracts (IOE) mediating anti-AD effects. METHODS AND RESULTS Oral administration of IOE significantly attenuated Aβ25-35 -induced cognitive deficits, as estimated by Y-maze and Morris water maze tests. IOE also attenuated the Aβ25-35 -induced cellular apoptosis and expression of inducible isoforms of nitric oxide synthases (iNOS) and cyclooxygenase-2 (COX-2) in mouse brains and PC12 cells. In addition, Aβ25-35 -induced phosphorylation of ERK, p38 MAPK, and JNK in mouse brains and PC12 cells is significantly abolished by administration of IOE. In PC12 cells, pretreatment of signal inhibitors (PD98059 (MEK inhibitor), SB203580 (p38 MAPK inhibitor), and SP600125 (JNK inhibitor)) recovers Aβ25-35 -mediated cellular dysregulations to the same extent as does IOE pretreatment. CONCLUSION Taken together, the data suggest that Aβ25-35 -induced AD progress may be attenuated by administration of IOE through prevention of Aβ25-35 -induced phosphorylation of ERK, p38 MAPK, and JNK.
Collapse
Affiliation(s)
- Oh Yun Kwon
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, Korea
| | - Seung Ho Lee
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, Korea
| |
Collapse
|
3
|
Kim MS, Oh GW, Jang YM, Ko SC, Park WS, Choi IW, Kim YM, Jung WK. Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110352. [PMID: 31761165 DOI: 10.1016/j.msec.2019.110352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
Abstract
In this study, we fabricated polyvinyl alcohol hydrogels containing diphlorethohydroxycarmalol (DPHC) from Ishige okamurae for its anti-bacterial effect in wound-dressing applications. First, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DPHC against Staphylococcus aureus and Pseudomonas aeruginosa were investigated, and these were found to be about 128 μg/mL and 512 μg/mL, respectively. Polyvinyl alcohol hydrogels loaded with different concentrations of DPHC were then produced for the dressing of wounds to assist in the healing process and to provide an antibacterial effect. To investigate the characteristics of the proposed PVA/DPHC hydrogels, we conducted SEM analysis, rheological analysis, thermogravimetric analysis, water swelling analysis, drug release testing, and gel fraction assessment. The antibacterial activity of the PVA/DPHC hydrogels was also tested against the gram-positive bacterium S. aureus and the gram-negative bacterium P. aeruginosa using ASTM E2149 tests. The biocompatibility of the PVA/DPHC hydrogels was assessed using in vitro indirect and direct contact tests and in vivo tests on ICR mice. The PVA/DPHC hydrogels exhibited the ability to reduce the viability of S. aureus and P. aeruginosa by about 99% in ASTM E2149 testing, while not producing any toxic effect on NHDF-Neo or HaCaT cells as shown in MTT assays and in vitro FDA fluorescence analysis. In addition, the PVA/DPHC hydrogels had a strong wound healing effect when compared to non-treated groups of ICR mice in vivo. Based on the characterization of the PVA/DPHC hydrogels in vitro and in vivo, this study suggests that the proposed hydrogel has significant potential for use in wound dressing.
Collapse
Affiliation(s)
- Min-Sung Kim
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Gun-Woo Oh
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Yu-Mi Jang
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seok-Chun Ko
- Team of Marine Bio-resources, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, Kangwon National University, School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Mog Kim
- Division of Food Science and Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Transcriptional response of cultured porcine intestinal epithelial cells to micro algae extracts in the presence and absence of enterotoxigenic Escherichia coli. GENES AND NUTRITION 2019; 14:8. [PMID: 30923583 PMCID: PMC6423797 DOI: 10.1186/s12263-019-0632-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Background Micro algae's are worldwide considered as an alternative source of proteins in diets for animals and humans. Micro algae also produce an array of biological active substances with potential to induce beneficial and health promoting effects. To better understand the mode of action of micro algae's when applied as additive in diets, porcine intestinal epithelial cells (IPEC-J2), stressed by enterotoxigenic Escherichia coli (ETEC) or under non-stressed conditions, were exposed to micro algae extracts and changes in gene expression were recorded. Methods IPEC-J2 cells were exposed for 2 and 6 h to extracts prepared from the biomass of the microalgae Chlorella vulgaris (C), Haematococcus pluvialis (H), Spirulina platensis (S), or a mixture of Scenedesmus obliques and Chlorella sorokiniana (AM), in the absence and presence of ETEC. Gene expression in cells was measured using porcine "whole genome" microarrays. Results The micro algae extracts alone enhanced the expression of a set of genes coding for proteins with biological activity that are secreted from cells. These secreted proteins (hereafter denoted as effector proteins; EPs) may regulate processes like remodelling of the extracellular matrix, activation of an antiviral/bacterial response and oxygen homeostasis in the intestine and periphery. Elevated gene expression of immunostimulatory proteins CCL17, CXCL2, CXCL8 (alias IL8), IFNA, IFNL1, HMOX1, ITGB3, and THBS1 was observed in response to all four extracts in the absence or presence of ETEC. For several of these immunostimulatory proteins no elevated expression was observed when cells were exposed to ETEC alone. Furthermore, all extracts highly stimulated expression of an antisense RNA of the mitochondrial/peroxisome symporter SLC25A21 gene in ETEC-challenged cells. Inhibition of SLC25A21 translation by this antisense RNA may impose a concentration gradient of 2-oxoadipic and 2-oxoglutarate, both metabolites of fatty acid β-oxidation, between the cytoplasm and the interior of these organelles. Conclusions Exposure of by ETEC stressed intestinal epithelium cells to micro algae extracts affected "fatty acid β-oxidation", ATP and reactive oxygen species production and (de) hydroxylation of lysine residues in procollagen chains in these cells. Elevated gene expression of specific EPs and immunostimulatory proteins indicated that micro algae extracts, when used as feed/food additive, can steer an array of metabolic and immunological processes in the intestines of humans and monogastric animals stressed by an enteric bacterial pathogen.
Collapse
|
5
|
Eom SH, Lee EH, Park K, Kwon JY, Kim PH, Jung WK, Kim YM. Eckol fromEisenia bicyclisInhibits Inflammation Through the Akt/NF-κB Signaling inPropionibacterium acnes-Induced Human Keratinocyte Hacat Cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sung-Hwan Eom
- Korea Food Research Institute; Sungnam 13539 Republic of Korea
| | - Eun-Hye Lee
- Department of Food Science and Technology; Pukyong National University; Busan 48513 Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Ji-Young Kwon
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Poong-Ho Kim
- Food Safety and Processing Research Division; National Institute of Fisheries Science; Busan 46083 Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering; Pukyong National University; Busan 48513 Republic of Korea
- Marine-Integrated Bionics Research Center, Pukyong National University; Busan 48513 Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology; Pukyong National University; Busan 48513 Republic of Korea
- Marine-Integrated Bionics Research Center, Pukyong National University; Busan 48513 Republic of Korea
| |
Collapse
|
6
|
Piao MJ, Hewage SRKM, Han X, Kang KA, Kang HK, Lee NH, Hyun JW. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes. Mar Drugs 2015; 13:5629-41. [PMID: 26404324 PMCID: PMC4584344 DOI: 10.3390/md13095629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 12/02/2022] Open
Abstract
We investigated the protective properties of diphlorethohydroxycarmalol (DPHC), a phlorotannin, against ultraviolet B (UVB) radiation-induced cyclobutane pyrimidine dimers (CPDs) in HaCaT human keratinocytes. The nucleotide excision repair (NER) system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV) radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC) and excision repair cross-complementing 1 (ERCC1), which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1) and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Korea.
| | | | - Xia Han
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Korea.
| | - Hee Kyoung Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Korea.
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 63243, Korea.
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
7
|
Jeon Y, Song S, Kim H, Cheon YP. Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell. Dev Reprod 2013; 17:275-87. [PMID: 25949143 PMCID: PMC4282291 DOI: 10.12717/dr.2013.17.3.275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 01/18/2023]
Abstract
Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.
Collapse
Affiliation(s)
- Younmi Jeon
- Division of Developmental Biology and Physiology, School of Biosicences and Chemistry, Sungshin Women’s University, Seoul 142-742, Republic of Korea
| | - Siyoung Song
- NSTECH Co. Ltd., Incheon 405-848, Republic of Korea
| | - Hagju Kim
- Seojin BioTech Co. Ltd., Suwon 443-373, Republic of Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, School of Biosicences and Chemistry, Sungshin Women’s University, Seoul 142-742, Republic of Korea
| |
Collapse
|