1
|
Nurlybekova A, Kudaibergen A, Kazymbetova A, Amangeldi M, Baiseitova A, Ospanov M, Aisa HA, Ye Y, Ibrahim MA, Jenis J. Traditional Use, Phytochemical Profiles and Pharmacological Properties of Artemisia Genus from Central Asia. Molecules 2022; 27:molecules27165128. [PMID: 36014364 PMCID: PMC9415318 DOI: 10.3390/molecules27165128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.
Collapse
Affiliation(s)
- Aliya Nurlybekova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Aidana Kudaibergen
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Aizhan Kazymbetova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Magzhan Amangeldi
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aizhamal Baiseitova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Meirambek Ospanov
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Haji Akber Aisa
- Xinjiang Technical Institutes of Physics and Chemistry, Central Asian of Drug Discovery and Development, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mohamed Ali Ibrahim
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (M.A.I.); (J.J.)
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Xinjiang Technical Institutes of Physics and Chemistry, Central Asian of Drug Discovery and Development, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (M.A.I.); (J.J.)
| |
Collapse
|
2
|
Comparative Analysis of the Antioxidant and Antidiabetic Potential of Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.). J CHEM-NY 2022. [DOI: 10.1155/2022/4258124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.) are both aquatic rhizomatous perennial plants mostly found in the tropical region of Nepal, India, Bangladesh, China, and Eastern Asia. Nymphaea pubescens and Nelumbo nucifera plants are famous for their different biological activities such as antidiabetic, antioxidant, hepatoprotective, antidiarrheal, and anti-inflammatory properties. Objective. The present study majorly focused on the determination of in vitro antioxidant and antidiabetic properties of Nelumbo nucifera and Nymphaea pubescens. Methods. In vitro α-glucosidase inhibition was performed using PNPG as a substrate. Antioxidant property of the plant extract was determined by DPPH free radical scavenging assay. The aluminium trichloride method was done for the estimation of total flavonoid content. Likewise, Folin–Ciocalteu reagent was used for determining total phenolic content. Results. The total phenolic content of N. nucifera and N. pubescens was found to be 172.827 ± 0.41 and 194.87 ± 0.93 mg GAE/g, respectively, while the total flavonoid content was reported 17.12 ± 1.04 and 34.59 ± 1.73 mg QE/g, respectively. The IC50 values of the crude extract and its fractions of N. nucifera against the DPPH free radical ranged from 33.46 ± 0.6 to 3.52 ± 0.09 μg/mL, while that of the N. pubescens ranged from 14.30 ± 0.43 to 1.43 ± 0.08 μg/mL. Similarly, for the in vitro α-glucosidase inhibition activity, the IC50 of the crude extract and its fractions of N. nucifera varied from 349.86 ± 2.91 to 29.06 ± 0.24 μg/mL and that of N. pubescens ranged from 224.4 ± 6.85 to 5.29 ± 0.39 μg/mL. Conclusion. Both aquatic plants N. nucifera and N. pubescens show antioxidant properties and can inhibit α-glucosidase in in vitro. Further research is required to identify the inhibiting compounds.
Collapse
|
3
|
Somasekharan Nair Rajam S, Neenthamadathil Mohandas K, Vellolipadikkal H, Viswanathan Leena S, Kollery Suresh V, Natakkakath Kaliyathan R, Sreedharan Nair R, Lankalapalli RS, Mullan Velandy R. Spice-infused palmyra palm syrup improved cell-mediated immunity in Wistar Albino rats. J Food Biochem 2020; 44:e13466. [PMID: 32964485 DOI: 10.1111/jfbc.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022]
Abstract
Spices attract tremendous attention in the management of viral infections. However, scientific validation is vital to recommend spices as nutraceuticals or functional foods. In the present work, we have selected three spices based on Ayurvedic knowledge and developed a nutraceutical for immunomodulation. Trikatu, a blend of ginger, black pepper, and long pepper, is used in the Indian Ayurvedic system, along with many herbs, for various ailments. We formulated a "Trikatu syrup" (TS) using these three spices and palmyra palm neera. Carbon clearance assay, neutrophil adhesion test, and sheep red blood cell (SRBC)-induced delayed-type hypersensitivity (DTH) reaction was performed to investigate the immunomodulatory potential of TS in Wistar Albino rats. The rats fed with TS showed a dose-dependent increase in footpad thickness compared to control rats, suggesting cell-mediated immunity. The major bioactive piperine in TS was isolated and quantified. PRACTICAL APPLICATIONS: Spices are consumed worldwide as a flavor enhancer in food. Besides, spices have an array of bioactive molecules with a multitude of health benefits. In the backdrop of COVID-19, immunomodulation and antiviral properties of spices are discussed widely. The present study is intended to explore the potential of three selected spices (ginger, black pepper, and long pepper) beyond its application in typical food preparations. The syrup formulated in this study by using these three spices improved cell-mediated immunity in Wistar Albino rats. The study warrants further validation studies of the formulated product for providing indisputable claims for the immunomodulation properties.
Collapse
Affiliation(s)
- Suja Somasekharan Nair Rajam
- Ethnomedicine and Ethnopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Krishnakumar Neenthamadathil Mohandas
- Ethnomedicine and Ethnopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India.,Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | - Habeeba Vellolipadikkal
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Syamnath Viswanathan Leena
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Veena Kollery Suresh
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Raveena Natakkakath Kaliyathan
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Rajasekharan Sreedharan Nair
- Ethnomedicine and Ethnopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Ravi Shankar Lankalapalli
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Reshma Mullan Velandy
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Gias ZT, Afsana F, Debnath P, Alam MS, Ena TN, Hossain MH, Jain P, Reza HM. A mechanistic approach to HPLC analysis, antinociceptive, anti-inflammatory and postoperative analgesic activities of panch phoron in mice. BMC Complement Med Ther 2020; 20:102. [PMID: 32228549 PMCID: PMC7106723 DOI: 10.1186/s12906-020-02891-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Panch phoron is a mixture of five spices containing an equal proportion of Foeniculum vulgare (fennel), Trigonella foenum-graecum Linn (fenugreek), Nigella sativa (black cumin), Cuminum cyminum (cumin) and Brassica nigra (black mustard). The mixture is commonly used in Bangladeshi cuisine and possesses many pharmacological effects. In this study, we evaluated the antinociceptive and anti-inflammatory activities of aqueous panch phoron extract (PPE) in vivo, its possible mechanism of action and phytochemical analysis by High-Performance Liquid Chromatography (HPLC). We also investigated the effect of PPE on postoperative pain in mice. Methods HPLC was carried out using LC-20A Modular HPLC system to identify the bioactive compounds present in PPE. Five groups of Swiss albino male mice (n = 6 per group) were orally treated with 10 ml/kg of distilled water or 10 mg/kg of sodium diclofenac or three doses of PPE (100 mg/kg, 300 mg/kg, 500 mg/kg). In vivo assessment was carried out by the writhing test, tail-flick test, formalin test, and carrageenan induced paw edema test. The opioid antagonist, naloxone was used in the acetic acid test to evaluate the involvement of opioid receptors. To assess the effect of PPE in postoperative pain, mice that underwent sciatic nerve surgery were measured for the paw withdrawal latency in a hot water bath. Results In HPLC analysis, different types of phenolic compounds and flavonoids, including catechin hydrate, para-coumaric acid, vanillic acid, and syringic acid were detected. Treatment with PPE exhibited dose-dependent antinociceptive and anti-inflammatory activities in pain models (p < 0.05). Furthermore, naloxone did not reverse the effect of PPE in the writhing test. Mice that underwent sciatic nerve surgery showed that the paw withdrawal latency increased gradually over 7 days. Conclusions Our results demonstrate that PPE has significant antinociceptive and anti-inflammatory activities and can provide significant postoperative analgesia.
Collapse
Affiliation(s)
- Zarin Tasnim Gias
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Fatima Afsana
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Polak Debnath
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - M Shadidul Alam
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Tania Naz Ena
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Md Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), -1205, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh.
| |
Collapse
|
5
|
Shoaib M, Shah SWA, Ali N, Shah I, Ullah S, Ghias M, Tahir MN, Gul F, Akhtar S, Ullah A, Akbar W, Ullah A. Scientific investigation of crude alkaloids from medicinal plants for the management of pain. Altern Ther Health Med 2016; 16:178. [PMID: 27296395 PMCID: PMC4906632 DOI: 10.1186/s12906-016-1157-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tissue damage is associated with pain, which is an alarming sign. Aspirin and morphine have been widely used in recent decades for management of pain. Medicinal herbs have been in use for treatment of different diseases for centuries. Many of these herbs possess analgesic activity with relatively less incidences of adverse effects. The strong positive correlation of alkaloids in medicinal plants for analgesic activity persuades an intention to determine possible analgesic activity of total alkaloids extracted from the selected medicinal plants using animal models to answer its possible mechanisms. METHODS Crude alkaloids from selected medicinal plants (Woodfordia fruticosa, Adhatoda vasica, Chenopodium ambrosioides, Vitex negundo, Peganum harmala and Broussonetia papyrifera) were extracted as per reported literature. The test crude alkaloids were screened foracute toxicity study. Writhings induced by acetic acid, tail immersion method and formalin-induced nociception assay procedures were used for possible analgesic effects of the crude alkaloids. RESULTS Crude alkaloids were safe up to dose of 1250 mg/kg body weight in mice. The alkaloids significantly reduced the abdominal constrictions, and increased the time for paw licking response in both phases with a significant raise in latency time in nociception models (P ≤ 0.05). Moreover, the antinociceptive response was significantly attenuated by pretreatment with naloxone suggesting involvement of the opioid receptors for possible antinociceptive action. CONCLUSIONS Crude alkaloids of Woodfordia fruticosa and Peganum harmala showed prominent analgesic potentials through inhibition of peripheral as well as central nervous system mechanisms. Further work is required for isolation of the pharmacologically active constituents.
Collapse
|
6
|
Shoaib M, Shah I, Ali N, Shah WA. A mechanistic approach to anti-nociceptive potential of Artemisia macrocephala Jacquem. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:141. [PMID: 27229148 PMCID: PMC4881202 DOI: 10.1186/s12906-016-1114-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/13/2016] [Indexed: 11/23/2022]
Abstract
Background Artemisia macrocephala Jacquem (A. macrocephala), locally known as “Tarkha”, is a perennial plant found abundantly in northern areas of Pakistan. It is widely used in traditional medicine to treat fever, pain, gastrointestinal disorders and diabetes. Till date, no published studies are available regarding the in-vivo antinociceptive potential of the crude extract and sub-fractions from the aerial parts of A. macrocephala. Methods Antinociceptive effects of the crude methanolic extract and its sub-fractions were assessed using experimental pain models, including chemical nociception induced by intraperitoneal acetic acid or subplantar formalin injection and thermal nociception like tail immersion test in-vivo. Results The administration of various doses of crude extract and its fractions showed a dose-dependent indomethacin like antinociceptive effect in acetic acid induced writhing, subplantar formalin injection animal model suggesting the involvement of central mechanism of pain inhibition. Moreover, the crude extract and sub-fractions, on tail flick model (thermal nociception) demonstrated the involvement of central mechanism and significantly increased the latency time to 66.54, 82.94 and 70.53 %. The antagonistic study proposed the possible involvement of opioid receptor using naloxone as non-selective antagonist. The pharmacologically active chloroform and ethyl acetate fractions were further subjected to column chromatography that lead to the isolation four compounds. These isolated compounds were then subjected to various spectroscopic techniques upon which they were confirmed to be one sterol and three flavonoid derivatives. These findings suggest that Artemisia macrocephala possesses peripheral and central analgesic potentials partially associated with opioid system that support its folkloric use for the management of pain. The isolated compounds are currently under investigation in our laboratory for analgesic activity and its possible mechanism of action. Conclusion The results in this study provide evidences that A. macrocrphala has anticonciceptive effects and can be used for treatment of pain in traditional therapies. This study opens a new channel for isolation of analgesic compounds from the specie that is used traditionally for the management of pain. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1114-0) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Antonisamy P, Subash-Babu P, Alshatwi AA, Aravinthan A, Ignacimuthu S, Choi KC, Kim JH. Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: contribution of antioxidant, anti-inflammatory and anti-apoptotic activities. Chem Biol Interact 2014; 224:157-63. [PMID: 25289771 DOI: 10.1016/j.cbi.2014.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/23/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023]
Abstract
Gastric ulcer is an illness that affects a great number of people worldwide. The goal of the present research was to assess the anti-ulcerogenic activity of nymphayol (NYM), isolated from Nymphaea stellata, against an ethanol-induced ulcer model in rats. Administration of ethanol elevates the levels of the ulcer index (UI) along with causing tremendous increases in lipid peroxidation and myeloperoxidase (MPO) and significant decreases in gastric mucus, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and prostaglandin E2 (PGE2). However, the NYM- (45 mg/kg) pretreated animals showed considerable increases in antioxidants, gastric mucus, and PGE2 level and significant decreases in UI, lipid peroxidation, and MPO level. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were increased and the level of interleukin-10 (IL-10), an anti-inflammatory cytokine, was decreased in ethanol-induced ulcerated animals, and these inequalities were amended by NYM pretreatment. Pro-apoptotic markers including caspase-8, caspase-9, and caspase-3 were decreased and Bcl-2, an anti-apoptotic marker, was increased through NYM pretreatment, as compared with the ethanol-induced ulcer group. Pretreatment with indomethacin, SC560, rofecoxib, and Nω-Nitro-L-arginine methyl ester (L-NAME) considerably prevented the ulcer protective activity of NYM (45 mg/kg), indicating the involvement of cyclooxygenase (COX) and nitric oxide synthase (NOS) in NYM-mediated gastroprotection against ethanol-induced ulcer. These outcomes suggest that the gastroprotective effect of NYM might be mediated by adjustment of inflammatory mediators and apoptotic markers and increasing antioxidants.
Collapse
Affiliation(s)
- Paulrayer Antonisamy
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute, 664-14, 1GA, Duckjin-Dong, Duckjin-Gu, Jeonju City, Jeollabuk-Do 561-756, Republic of Korea
| | - Pandurangan Subash-Babu
- Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshatwi
- Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adithan Aravinthan
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute, 664-14, 1GA, Duckjin-Dong, Duckjin-Gu, Jeonju City, Jeollabuk-Do 561-756, Republic of Korea
| | - Savarimuthu Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Biosafety Research Institute, 664-14, 1GA, Duckjin-Dong, Duckjin-Gu, Jeonju City, Jeollabuk-Do 561-756, Republic of Korea.
| |
Collapse
|