1
|
Ma W, Tan X, Xie Z, Yu J, Li P, Lin X, Ouyang S, Liu Z, Hou Q, Xie N, Peng T, Li L, Dai Z, Chen X, Xie W. P53: A Key Target in the Development of Osteoarthritis. Mol Biotechnol 2024; 66:1-10. [PMID: 37154864 DOI: 10.1007/s12033-023-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Osteoarthritis (OA), a chronic degenerative disease characterized mainly by damage to the articular cartilage, is increasingly relevant to the pathological processes of senescence, apoptosis, autophagy, proliferation, and differentiation of chondrocytes. Clinical strategies for osteoarthritis can only improve symptoms and even along with side effects due to age, sex, disease, and other factors. Therefore, there is an urgent need to identify new ideas and targets for current clinical treatment. The tumor suppressor gene p53, which has been identified as a potential target for tumor therapeutic intervention, is responsible for the direct induction of the pathological processes involved in OA modulation. Consequently, deciphering the characteristics of p53 in chondrocytes is essential for investigating OA pathogenesis due to p53 regulation in an array of signaling pathways. This review highlights the effects of p53 on senescence, apoptosis, and autophagy of chondrocytes and its role in the development of OA. It also elucidates the underlying mechanism of p53 regulation in OA, which may help provide a novel strategies for the clinical treatment of OA.
Collapse
Affiliation(s)
- Wentao Ma
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhu Dai
- Department of Orthopedics, Hengyang Medical School, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China.
| | - Xi Chen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Buhrmann C, Honarvar A, Setayeshmehr M, Karbasi S, Shakibaei M, Valiani A. Herbal Remedies as Potential in Cartilage Tissue Engineering: An Overview of New Therapeutic Approaches and Strategies. Molecules 2020; 25:E3075. [PMID: 32640693 PMCID: PMC7411884 DOI: 10.3390/molecules25133075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
It is estimated that by 2023, approximately 20% of the population of Western Europe and North America will suffer from a degenerative joint disease commonly known as osteoarthritis (OA). During the development of OA, pro-inflammatory cytokines are one of the major causes that drive the production of inflammatory mediators and thus of matrix-degrading enzymes. OA is a challenging disease for doctors due to the limitation of the joint cartilage's capacity to repair itself. Though new treatment approaches, in particular with mesenchymal stem cells (MSCs) that integrate the tissue engineering (TE) of cartilage tissue, are promising, they are not only expensive but more often do not lead to the regeneration of joint cartilage. Therefore, there is an increasing need for novel, safe, and more effective alternatives to promote cartilage joint regeneration and TE. Indeed, naturally occurring phytochemical compounds (herbal remedies) have a great anti-inflammatory, anti-oxidant, and anabolic potential, and they have received much attention for the development of new therapeutic strategies for the treatment of inflammatory diseases, including the prevention of age-related OA and cartilage TE. This paper summarizes recent research on herbal remedies and their chondroinductive and chondroprotective effects on cartilage and progenitor cells, and it also emphasizes the possibilities that exist in this research area, especially with regard to the nutritional support of cartilage regeneration and TE, which may not benefit from non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Honarvar
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
| | - Mohsen Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
- Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran;
| | - Saeed Karbasi
- Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Ali Valiani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran; (A.H.); (M.S.)
| |
Collapse
|
3
|
Xu X, Liu X, Yang Y, He J, Jiang M, Huang Y, Liu X, Liu L, Gu H. Resveratrol Exerts Anti-Osteoarthritic Effect by Inhibiting TLR4/NF-κB Signaling Pathway via the TLR4/Akt/FoxO1 Axis in IL-1β-Stimulated SW1353 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2079-2090. [PMID: 32581510 PMCID: PMC7274521 DOI: 10.2147/dddt.s244059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
Purpose Osteoarthritis (OA) is associated with chronic low-grade inflammation. Resveratrol exerts protective effects on OA through its anti-inflammatory property; however, the mechanism of resveratrol on anti-inflammatory signaling pathways has not been fully elucidated yet. The aim of the present study was to investigate whether resveratrol-mediated PI3K/Akt expression is linked to TLR4/NF-κB pathway and the role of TLR4/Akt/FoxO1 axis in the anti-osteoarthritic effect of resveratrol. Methods SW1353 cells stimulated by IL-1β (10 ng/mL) were cultured in the presence or absence of resveratrol (50 μM) and then treated with TLR4 siRNA, PI3K inhibitor LY294002 or FoxO1 siRNA, respectively. The associated proteins of TLR4 signaling pathways and TLR4/Akt/FoxO1 axis were evaluated by Western blot. The level of IL-6 in the supernatant was detected by ELISA. Results IL-1β treatment increased the expression of TLR4/NF-κB and phosphorylation of PI3K/Akt and FoxO1, while additional resveratrol further upregulated the expression of PI3K/Akt and FoxO1 phosphorylation but downregulated TLR4 signals in SW1353 cells. Further analyses by the inhibition of TLR4, PI3K/Akt and FoxO1 signaling pathways, respectively, showed that the activation of TLR4 can induce PI3K/Akt phosphorylation, which increases the phosphorylation of FoxO1 and inactivates it. Next, inactivated-FoxO1 can reduce the expression of TLR4, which forms a self-limiting mechanism of inflammation. Resveratrol treatment can upregulate PI3K/Akt phosphorylation and inactivate FoxO1, thereby reducing TLR4 and inflammation. Conclusion This study reveals that TLR4/Akt/FoxO1 inflammatory self-limiting mechanism may exist in IL-1β-stimulated SW1353 cells. This study reveals a novel cross-talk mechanism which is between integrated PI3K/Akt/FoxO1 signaling network and TLR4-driven innate responses in IL-1β-stimulated SW1353 cells. Resveratrol may exert anti-OA effect by enhancing the self-limiting mechanism of inflammation through TLR4/Akt/FoxO1 axis.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Beihua University, Jilin, People's Republic of China
| | - Xudan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yingchun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jianyi He
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Mengqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Antioxidant and anti-isomerization effects of sesamol and resveratrol on high oleic acid peanut oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Xu X, Liu X, Yang Y, He J, Gu H, Jiang M, Huang Y, Liu X, Liu L. Resveratrol inhibits the development of obesity-related osteoarthritis via the TLR4 and PI3K/Akt signaling pathways. Connect Tissue Res 2019; 60:571-582. [PMID: 30922122 DOI: 10.1080/03008207.2019.1601187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim of the study: Obesity leads to mild, chronic inflammation which is a primary risk factor for osteoarthritis (OA). Resveratrol exerts a protective effect on OA through its anti-inflammatory properties, but the precise mechanism remains unknown. The present study aimed to investigate the mechanism by which resveratrol alleviates obesity-related OA, and whether it is linked to the TLR4 and PI3K/Akt signaling pathways. Materials and methods: C57BL/6J male mice were fed a high-fat diet (HFD) with or without resveratrol treatment and knee joints were collected for analysis. In addition, IL-1β-induced SW1353 cells were used to study in vitro the reciprocal effects of TLR4 and PI3K/Akt pathways. Results: Resveratrol inhibited the development of OA in mice fed a HFD. TLR4 and PI3K/Akt signaling pathways were both activated in the articular cartilage; resveratrol treatment down-regulated TLR4 but up-regulated PI3K/Akt signaling. Further in vitro results showed that the effect of resveratrol alone on activation of PI3K/Akt was attenuated but not abolished by the TLR4 inhibitor CLI-095, and resveratrol failed to reduce TLR4 protein expression in IL-1β stimulated cells pretreated with the PI3K inhibitor LY294002. Conclusions: Resveratrol may exert an anti-osteoarthritic effect by inhibiting TLR4 via the activation of PI3K/Akt signaling pathways. Resveratrol has potential as a drug for OA prevention.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China.,Department of Nutrition and Food Hygiene, School of Public Health, Beihua University , Jilin , China
| | - Xudan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Yingchun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Jianyi He
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University , Shenyang , China
| | - Mengqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University , Shenyang , China
| |
Collapse
|
6
|
Jiang H, Duan J, Xu K, Zhang W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp Ther Med 2019; 18:459-466. [PMID: 31258683 PMCID: PMC6566090 DOI: 10.3892/etm.2019.7594] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/29/2019] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to explore the protective role of resveratrol (RES) in asthma-induced airway inflammation and remodeling, as well as its underlying mechanism. An asthma rat model was induced by ovalbumin (OVA) treatment. Rats were randomly assigned into sham, asthma, 10 µmol/l RES and 50 µmol/l RES groups. The amount of inflammatory cells in rat bronchoalveolar lavage fluid (BALF) was detected. Pathological lesions in lung tissues were accessed by hematoxylin and eosin (H&E), and Masson's trichrome staining. Levels of inflammatory factors in lung homogenate were detected via ELISA. The blood serum of asthmatic and healthy children was also collected for analysis. Reverse transcription-quantitative polymerase chain reaction was performed to detect high mobility group box 1 (HMGB1), Τoll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88) and NF-κB expression in asthmatic and healthy children, as well as rats of the different groups. H&E staining demonstrated that multiple inflammatory cell infiltration into the rat airway epithelium of the asthma group occurred whilst the 50 µmol/l RES group displayed alleviated pathological lesions. Masson staining indicated that there was an increased airway collagen deposition area in the asthma and 10 µmol/l RES groups compared with the 50 µmol/l RES group. The number of inflammatory cells in BALF extracted from rats of the asthma and 10 µmol/l RES groups was higher compared with the 50 µmol/l RES group. Treatment with 50 µmol/l RES significantly decreased the thicknesses of the airway wall and smooth muscle. ELISA results illustrated that interleukin (IL)-1, IL-10 and tumor necrosis factor-α (TNF-α) levels were elevated, whereas IL-12 level was reduced in lung tissues of the asthma and 10 µmol/l RES groups whilst the 50 µmol/l RES group demonstrated the opposite trend. HMGB1, TLR4, MyD88 and NF-κB mRNA levels were remarkably elevated in rats of the asthma and 10 µmol/l RES groups compared with the 50 µmol/l RES group. Serum levels of IL-1, IL-10 and TNF-α were elevated, whereas IL-12 was reduced in asthmatic children compared with healthy children. The present results demonstrated that a large dose of RES alleviated asthma-induced airway inflammation and airway remodeling by inhibiting the release of inflammatory cytokines via the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Junyan Duan
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Kaihong Xu
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Wenbo Zhang
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
7
|
dos Santos DP, Soares Lopes DP, de Moraes RC, Vieira Gonçalves C, Pereira Rosa L, da Silva Rosa FC, da Silva RAA. Photoactivated resveratrol against Staphylococcus aureus infection in mice. Photodiagnosis Photodyn Ther 2019; 25:227-236. [DOI: 10.1016/j.pdpdt.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
|
8
|
Choi MS. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase. Biomol Ther (Seoul) 2018; 26:533-538. [PMID: 30464072 PMCID: PMC6254642 DOI: 10.4062/biomolther.2018.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.
Collapse
Affiliation(s)
- Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| |
Collapse
|
9
|
Li K, Li Y, Mi J, Mao L, Han X, Zhao J. Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS. Int J Mol Med 2018; 41:2485-2492. [PMID: 29436588 PMCID: PMC5846644 DOI: 10.3892/ijmm.2018.3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress induced disc cell apoptosis plays an important role in intervertebral disc (IVD) degeneration. The present study aims to investigate effects of resveratrol (RV), a natural polyphenol compound, on sodium nitroprusside (SNP) induced nucleus pulposus (NP) cell apoptosis and related mechanism. Rat NP cells were pretreated with RV, N-acetyl cysteine (NAC) and carboxy-PTIO (PTIO) before SNP treatment. Cell Counting Kit-8 assay was carried out for cell viability evaluation. Annexin V/propidium iodide (PI), Hoechst 33258 and Actin‑Tracker Green and Tubulin-Tracker Red staining were conducted to detect NP cell apoptosis and apoptotic structural changes. Mitochondrial membrane potential (ΔΨm) was analyzed with tetramethylrhodamine methyl ester staining. DCFH-DA and DAF-FM DA staining was used to determine intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels. An ex vivo experiment was also carried out followed by TUNEL assay of sections of discs. SNP induced NP cell apoptosis, excessive production of intracellular ROS and NO, reduction of ΔΨm as well as disruption of cytoskeletal and morphological structure. Meanwhile, organ culture results showed that SNP induced NP cell apoptosis ex vivo. RV and NAC siginificantly inhibited SNP induced NP cell apoptosis, production of intracellular ROS, deline of ΔΨm as well as disruption of cytoskeletal and morphological structure, while RV did not suppress NO production. RV and NAC could also suppress SNP induced NP cell apoptosis ex vivo. However, PTIO did not prevent SNP induced NP cell apoptosis, though it scavenged NO significantly. In conclusion, RV protects against SNP induced NP cell apoptosis by scavenging ROS but not NO, suggesting a promising prospect of RV in IVD degeneration retardation.
Collapse
Affiliation(s)
- Kang Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yan Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jie Mi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lu Mao
- Spine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
10
|
Donald EL, Stojanovska L, Apostolopoulos V, Nurgali K. Resveratrol alleviates oxidative damage in enteric neurons and associated gastrointestinal dysfunction caused by chemotherapeutic agent oxaliplatin. Maturitas 2017; 105:100-106. [PMID: 28545905 DOI: 10.1016/j.maturitas.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Oxaliplatin is a first-line chemotherapeutic agent used for the treatment of colorectal cancer. Its use is associated with severe gastrointestinal (GI) side-effects, associated with oxidative damage and neurotoxicity to the enteric neurons. Resveratrol is a potent anti-oxidant that has been shown to protect against oxidative damage and neurotoxicity in other neurons and could therefore prevent oxaliplatin-induced damage to enteric neurons. We determined whether co-administration of resveratrol with oxaliplatin alleviates enteric neuron toxicity and GI dysfunction in mice. Colons were collected for immunohistochemical analysis of myenteric neurons and assessment of motor activity in organ-bath experiments. Morphological damage to the colonic mucosa and muscles was analysed. Oxaliplatin treatment induced translocation of nitrated proteins into the nuclei of myenteric neurons and significant damage to the mucosal lining, vacuolisation and a decrease in muscle thickness. This damage is linked to motor dysfunction due to inhibition of the amplitude of colonic contractions, leading to chronic constipation. Co-treatment with resveratrol prevented oxaliplatin-induced neurotoxicity, alleviated damage to GI mucosa, crypts and muscle layer, resulting in improved contractility and a decrease in constipation. Resveratrol could be integrated as part of a therapeutic regimen to help alleviate oxaliplatin-induced GI dysfunction.
Collapse
Affiliation(s)
- Elizabeth L Donald
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Lily Stojanovska
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia.
| |
Collapse
|
11
|
Gu H, Jiao Y, Yu X, Li X, Wang W, Ding L, Liu L. Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. Int J Mol Med 2017; 39:734-740. [PMID: 28204817 DOI: 10.3892/ijmm.2017.2885] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/03/2017] [Indexed: 11/05/2022] Open
Abstract
The natural polyphenolic compound, resveratrol, has been shown to exhibit anti-osteoarthritic activity. Therefore it is hypothesized that resveratrol may serve as a nutritional supplement to counteract osteoarthritis (OA). However, the mechanisms responsible for these anti-osteoarthritic effects have not yet been fully elucidated. The aim of this study was to determine whether the biological effects of resveratrol against interleukin (IL)-1β‑induced inflammation in human articular chondrocytes involved both Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-dependent and -independent signaling pathways. Human articular chondrocytes derived from patients with OA were stimulated with IL-1β, and then co-treated with resveratrol. Cell viability was subsequently evaluated by MTS assays, and the concentrations of matrix metalloproteinase (MMP)-13 and the pro-inflammatory factor, IL-6, were detected in culture supernatants using ELISA. The mRNA and protein levels of downstream mediators of TLR4/MyD88-dependent and -independent signaling pathways were also assayed by RT-qPCR and western blot analysis, respectively. Our results revealed that resveratrol prevented the IL-1β-induced reduction in cell viability. Furthermore, stimulation of the chondrocytes with IL-1β resulted in a significant upregulation of TLR4 and downstream targets of both TLR4/MyD88-dependent and -independent signaling pathways that are associated with the synthesis of MMP-13 and IL-6. Correspondingly, IL-1β-induced catabolic and inflammatory responses were effectively reversed by resveratrol. Taken together, these data suggest that resveratrol exerted protective effects against matrix degradation and inflammation in OA-affected chondrocytes by inhibiting both TLR4/MyD88-dependent and -independent signaling pathways. Thus, resveratrol represents a potential treatment for OA and warrants further investigation.
Collapse
Affiliation(s)
- Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongliang Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolu Yu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xingyao Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wei Wang
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lifeng Ding
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
12
|
Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet. Mediators Inflamm 2017; 2017:7659023. [PMID: 28250578 PMCID: PMC5303602 DOI: 10.1155/2017/7659023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity has been associated with osteoarthritis (OA) due to increased mass and metabolic factors which are independent of the biomechanical contribution to joint load. Resveratrol, a natural polyphenolic compound, exerts protective effects on OA through its anti-inflammatory property. However, the mechanism of resveratrol on obesity-related OA is unclear. To investigate the effect and possible mechanism of oral resveratrol on obesity-related OA, we fed C57BL/6J mice with a high-fat diet (HFD) for 16 weeks to establish obesity-related OA model; then two doses (22.5 mg/kg and 45 mg/kg) of resveratrol were given by gavage for additional 12 weeks. Mice with HFD significantly increased body weights compared to the control mice, while resveratrol treatment did not cause obvious weight loss. Histological assessments showed that resveratrol at 45 mg/kg significantly improved OA symptoms. Levels of serum IL-1β and leptin were decreased by resveratrol treatment and positively correlated with Mankin scores. Moreover, resveratrol significantly inhibited the expression of TLR4 and TRAF6 in cartilage. These results suggest that HFD induced obesity can lead to the occurrence of OA, and resveratrol may alleviate OA pathology by decreasing the levels of systematic inflammation and/or inhibiting TLR4 signaling pathway in cartilage. Thus, resveratrol might be a promising therapeutic treatment for obesity-related OA.
Collapse
|
13
|
Wang YH, Dong J, Zhang JX, Zhai J, Ge B. Effects of mimic of manganese superoxide dismutase on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats. Arch Pharm Res 2016; 39:1296-306. [DOI: 10.1007/s12272-016-0811-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023]
|
14
|
Wang ZM, Chen YC, Wang DP. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats. Biomed Pharmacother 2016; 83:763-770. [PMID: 27484345 DOI: 10.1016/j.biopha.2016.06.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic progressive joint disease characterized by advanced joint pain, subchondral bone sclerosis and articular cartilage degeneration. Resveratrol has been shown to have anti-inflammatory, cardioprotective and antioxidant properties and to inhibit platelet aggregation and coagulation. However, the effects of resveratrol on OA have not been examined. In this study, we investigate the protective effects of resveratrol on monosodium iodoacetate (MIA)-induced OA through inhibition of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) signaling pathway in a rat model. METHODS A single intra-articular injection of MIA was injected into rats for the induction of OA. The mechanical, heat and cold hyperalgesia were measured at days 0, 7 and 14. The serum and synovial fluid levels of IL-1β, IL-10 and TNF-α and osteocalcin were measured by enzyme-linked immunosorbent assay. The mRNA and protein expressions of IL-1β, IL-10, TNF-α, Il-6, MMP-13 and COX-2 and iNOS were determined by RT-PCR and western blot, respectively. Osteoarthritic lesion in the knee joint was evaluated by histological analysis. RESULTS MIA-injected rats treated with resveratrol at a dose of either 5 or 10mg/kg body weight were significantly reduced hyperalgesia of mechanical, heat and cold and increased the vertical and horizontal movements. Subsequently, MIA-injected rats increased serum and synovial fluid levels of IL-1β, IL-10, IL-6, TNF-α, MMP-13 and osteoclastic activity marker, osteocalcin and its articular cartilage mRNA and protein expressions. Further, MIA-injected rats increased COX-2 and iNOS mRNA and protein expressions were decreased by resveratrol. The protective effect of resveratrol was comparable to a reference drug, etoricoxib. The cartilage damage induced by MIA were attenuated by resveratrol. CONCLUSIONS Taken together, resveratrol has the potential to improve MIA-induced cartilage damage by inhibiting the levels and expressions of inflammatory mediators suggesting that resveratrol may be a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Zhu-Min Wang
- Department of Bone and Hand Microsurgery, Shandong Wendeng Orthopedic and Traumatic Hospital, Shandong, China
| | - Yong-Cai Chen
- Department of Microsurgery, The First Affiliated Hospital of Henan University of Science and Technology, LuoYang, China
| | - Da-Peng Wang
- Department of Osteology, Zhengzhou Orthopaedics Hospital, No. 58 the Longhai Road, Two seven District, Zhengzhou City, Henan, 450000, China.
| |
Collapse
|
15
|
Quan YY, Qin GQ, Huang H, Liu YH, Wang XP, Chen TS. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis. Free Radic Biol Med 2016; 94:135-44. [PMID: 26923801 DOI: 10.1016/j.freeradbiomed.2016.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
Sodium nitroprusside (SNP) has been widely used as an exogenous nitric oxide (NO) donor to explore the molecular mechanism of NO-mediated chondrocyte apoptosis during the latest two decades. We have recently found that NO-independent ROS play a key role in SNP-induced apoptosis in rabbit chondrocytes. This study aims to investigate what kind of ROS and how the reliable ROS mediators mediate the SNP-induced apoptosis. Data shows that SNP and NO-exhausted SNP (SNPex) induced ROS production or cytotoxicity to identically degree. SNP induced a marked increase in iron ions, superoxide anion (O2(•-)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH) level. H2O2 scavenger (CAT) and (•)OH scavenger (DMSO) significantly inhibited SNP-induced chondrocyte apoptosis. Iron ions chelator (DFO) entirely prevented SNP-induced chondrocyte apoptosis. In contrast, O2(•-) scavenger (SOD) and glutathione depletion agent (BSO) promoted SNP-induced cytotoxicity. K3[Fe(CN)6] exhibited no cytotoxicity, and H2O2 alone up to 250µM or iron ions alone up to 90µM is non-cytotoxic to chondrocytes. Combination of 25µM FeSO4 and 100µM H2O2 in the presence of BSO induced chondrocyte death similar to SNP treatment. Fetal bovine serum (FBS) enhanced iron ions release from SNP and the cytotoxicity of SNP. Our data shows that the extracellular Fenton reaction between iron ions released from SNP and H2O2 induced by SNP plays a key role in SNP-induced chondrocyte apoptosis. Overall, our results indicate that the potential of SNP to increase iron ions and ROS should be especially considered for some biological functions and, possibly, also for clinical applications of this drug.
Collapse
Affiliation(s)
- Ying-Yao Quan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gui-Qi Qin
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Hao Huang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Hong Liu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Ping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tong-Sheng Chen
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
16
|
Chang Z, Huo L, Li P, Wu Y, Zhang P. Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol Med Rep 2015; 12:7086-92. [PMID: 26300283 DOI: 10.3892/mmr.2015.4231] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 07/03/2015] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is considered to be an important cause of dysfunction in chondrocytes and articular cartilage degradation, which leads to the pathogenesis of osteoarthritis (OA) and cartilage aging. The present study aimed to assess the effects of the widely applied antioxidant, ascorbic acid (AA), on human chondrocytes against hydrogen peroxide (H2O2) in vitro. Using annexin V‑fluorescein isothiocyanate, 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyl tetrazolium bromide and senescence‑associated β‑galactosidase assays, the present study identified that AA reduced apoptosis, reduced the loss of viability and markedly decreased H2O2‑mediated senescence in cells treated with H2O2. Furthermore, AA not only stimulated the expression levels of collagens and proteoglycans, but also inhibited the differentiation of chondrocytes under conditions of oxidative stress. In addition, reverse transcription‑quantitative polymerase chain reaction and western blotting demonstrated that AA decreased the activity of nrf2, NF‑κB, AP1 and matrix metalloproteinase‑3, which is stimulated by H2O2. In conclusion, AA efficiently protected human chondrocytes against damage induced by H2O2 by regulating multiple regulatory pathways.
Collapse
Affiliation(s)
- Zhiqiang Chang
- Department of Cervical Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Mongolia 010030, P.R. China
| | - Lifeng Huo
- Department of Cervical Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Mongolia 010030, P.R. China
| | - Pengfei Li
- Department of Cervical Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Mongolia 010030, P.R. China
| | - Yimin Wu
- Department of Cervical Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Mongolia 010030, P.R. China
| | - Pei Zhang
- Department of Cervical Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Mongolia 010030, P.R. China
| |
Collapse
|
17
|
Sung NY, Kim MY, Cho JY. Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:441-9. [PMID: 26330757 PMCID: PMC4553404 DOI: 10.4196/kjpp.2015.19.5.441] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/15/2022]
Abstract
Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-κB-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-β (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-κ B nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-κB activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-κB activation.
Collapse
Affiliation(s)
- Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Mi-Yeon Kim
- School of Systems Biological Science, Soongsil University, Seoul 156-743, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
18
|
Yoon JY, Kim JH, Baek KS, Kim GS, Lee SE, Lee DY, Choi JH, Kim SY, Park HB, Sung GH, Lee KR, Cho JY, Noh HJ. A direct protein kinase B-targeted anti-inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris. Pharmacogn Mag 2015; 11:477-85. [PMID: 26246722 PMCID: PMC4522833 DOI: 10.4103/0973-1296.160454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/18/2014] [Accepted: 07/10/2015] [Indexed: 11/25/2022] Open
Abstract
Background: Cordyceps militaris is one of well-known medicinal mushrooms with anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity activities. Objective: The objective of the following study is to isolate chemical components from the ethanol extract (Cm-EE) from Cordyceps militaris and to evaluate their anti-inflammatory activities. Materials and Methods: Column chromatographic separation was performed and anti-inflammatory roles of these compounds were also examined by using NO production and protein kinase B (AKT) activity assays. Results: From Cm-EE, 13 constituents, including trehalose (1), cordycepin (2), 6-hydroxyethyladenosine (3), nicotinic amide (4), butyric acid (5), β-dimorphecolic acid (6), α-dimorphecolic acid (7), palmitic acid (8), linoleic acid (9), cordycepeptide A (10), 4-(2-hydroxy-3-((9E,12E)-octadeca-9,12-dienoyloxy)propoxy)-2-(trimethylammonio)butanoate (11), 4-(2-hydroxy-3-(palmitoyloxy)propoxy)-2-(trimethylammonio)butanoate (12), and linoleic acid methyl ester (13) were isolated. Of these components, compound 2 displayed a significant inhibitory effect on NO production in lipopolysaccharide (LPS)-activated RAW264.7 cells. Furthermore, this compound strongly and directly suppressed the kinase activity of AKT, an essential signalling enzyme in LPS-induced NO production, by interacting with its ATP binding site. Conclusion: C. militaris could have anti-inflammatory activity mediated by cordycepin-induced suppression of AKT.
Collapse
Affiliation(s)
- Ju Young Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Geum Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Seung Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Je Hun Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Seung Yu Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Hyun Bong Park
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon 440 746, Korea
| | - Gi-Ho Sung
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| | - Kang Ro Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon 440 746, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hyung Jun Noh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseoung 369 873, Korea
| |
Collapse
|
19
|
Baek KS, Ahn S, Lee J, Kim JH, Kim HG, Kim E, Kim JH, Sung NY, Yang S, Kim MS, Hong S, Kim JH, Cho JY. Immunotoxicological Effects of Aripiprazole: In vivo and In vitro Studies. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:365-72. [PMID: 26170741 PMCID: PMC4499649 DOI: 10.4196/kjpp.2015.19.4.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 12/20/2022]
Abstract
Aripiprazole (ARI) is a commonly prescribed medication used to treat schizophrenia and bipolar disorder. To date, there have been no studies regarding the molecular pathological and immunotoxicological profiling of aripiprazole. Thus, in the present study, we prepared two different formulas of aripiprazole [Free base crystal of aripiprazole (ARPGCB) and cocrystal of aripiprazole (GCB3004)], and explored their effects on the patterns of survival and apoptosis-regulatory proteins under acute toxicity and cytotoxicity test conditions. Furthermore, we also evaluated the modulatory activity of the different formulations on the immunological responses in macrophages primed by various stimulators such as lipopolysaccharide (LPS), pam3CSK, and poly(I:C) via toll-like receptor 4 (TLR4), TLR2, and TLR3 pathways, respectively. In liver, both ARPGCB and GCB3004 produced similar toxicity profiles. In particular, these two formulas exhibited similar phospho-protein profiling of p65/nuclear factor (NF)-κB, c-Jun/activator protein (AP)-1, ERK, JNK, p38, caspase 3, and bcl-2 in brain. In contrast, the patterns of these phospho-proteins were variable in other tissues. Moreover, these two formulas did not exhibit any cytotoxicity in C6 glioma cells. Finally, the two formulations at available in vivo concentrations did not block nitric oxide (NO) production from activated macrophage-like RAW264.7 cells stimulated with LPS, pam3CSK, or poly(I:C), nor did they alter the morphological changes of the activated macrophages. Taken together, our present work, as a comparative study of two different formulas of aripiprazole, suggests that these two formulas can be used to achieve similar functional activation of brain proteins related to cell survival and apoptosis and immunotoxicological activities of macrophages.
Collapse
Affiliation(s)
- Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | | | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Mi Seon Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
20
|
Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Kim JH, Yoon DH, Song WO, Yoon KD, Cho SH, Lee S, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:217-228. [PMID: 25839115 DOI: 10.1016/j.jep.2015.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus acidus (L.) Skeels (Phyllanthaceae) has traditionally been used to treat gastric trouble, rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Despite this widespread use, the pharmacological activities of this plant and their molecular mechanisms are poorly understood. Therefore, we evaluated the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Pa-ME) and validated its pharmacological targets. MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages, an HCl/EtOH-induced gastritis model, and an acetic acid-injected capillary permeability mouse model were employed to evaluate the anti-inflammatory activity of Pa-ME. Potentially active anti-inflammatory components of this extract were identified by HPLC. The molecular mechanisms of the anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. RESULTS Pa-ME suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and prevented morphological changes in LPS-treated RAW264.7 cells. Moreover, both HCl/EtOH-induced gastric damage and acetic acid-triggered vascular permeability were restored by orally administered Pa-ME. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signalling events upstream of NF-κB translocation, such as phosphorylation of Src and Syk and formation of Src/Syk signalling complexes, were also inhibited by Pa-ME. The enzymatic activities of Src and Syk were also suppressed by Pa-ME. Moreover, Src-induced and Syk-induced luciferase activity and p85/Akt phosphorylation were also inhibited by Pa-ME. Of the identified flavonoids, kaempferol and quercetin were revealed as partially active anti-inflammatory components in Pa-ME. CONCLUSION Pa-ME exerts anti-inflammatory activity in vitro and in vivo by suppressing Src, Syk, and their downstream transcription factor, NF-κB.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Animal Science, Patuakhali Science and Technology University, Bangladesh
| | - Sung Ho Jeon
- Department of Life Science Hallym University, Chuncheon 200-702, Republic of Korea
| | - Seung Cheol Kim
- Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 220-700, Republic of Korea
| | - Won O Song
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Sang-Ho Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
21
|
Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS. Apoptosis 2015; 19:1354-63. [PMID: 25001340 DOI: 10.1007/s10495-014-1012-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.
Collapse
|
22
|
Kim E, Yoon KD, Lee WS, Yang WS, Kim SH, Sung NY, Baek KS, Kim Y, Htwe KM, Kim YD, Hong S, Kim JH, Cho JY. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:185-193. [PMID: 24866386 DOI: 10.1016/j.jep.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codariocalyx motorius (Houtt.) H. Ohashi (Fabaceae) is one of several ethnopharmacologically valuable South Asian species prescribed as an herbal medicine for various inflammatory diseases. Due to the lack of systematic studies on this plant, we aimed to explore the inhibitory activity of Codariocalyx motorius toward inflammatory responses using its ethanolic extract (Cm-EE). MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages and a HCl/EtOH-induced gastritis model were used for evaluation of the anti-inflammatory activity of Cm-EE. HPLC and spectroscopic analysis were employed to identify potential active components. Mechanistic approaches to determine target enzymes included kinase assays, reporter gene assays, and overexpression of target enzymes. RESULTS Cm-EE strongly suppressed nitric oxide (NO) and prostaglandin E2 (PGE2) release. Cm-EE-mediated inhibition was observed at the transcriptional level in the form of suppression of NF-κB (p65) translocation and activation. This extract also lowered the levels of phosphorylation of Src and Syk, their kinase activity, and their formation of signalling complexes by binding to the downstream enzyme p85/PI3K. In accord with these findings, the phosphorylation of p85 induced by overexpression of Src or Syk was also diminished by Cm-EE. Orally administered Cm-EE clearly inhibited gastritic ulcer formation and the phosphorylation of IκBα and Src in HCl/EtOH-treated stomachs of mice. By phytochemical analysis, luteolin and its glycoside, apigenin-7-O-glucuronide, and scutellarein-6-O-glucuronide were identified as major components of Cm-EE. Among these, it was found that luteolin was able to strongly suppress NO and PGE2 production under the same conditions. CONCLUSION Syk/Src-targeted inhibition of NF-κB by Cm-EE could be a major anti-inflammatory mechanism contributing to its ethno pharmacological role as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Woo-Shin Lee
- Department of Forest Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Myanmar
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
23
|
Protective effect of resveratrol against IL-1β-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-κB signaling pathway: an "in vitro study". Int J Mol Sci 2014; 15:6925-40. [PMID: 24758933 PMCID: PMC4013670 DOI: 10.3390/ijms15046925] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023] Open
Abstract
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-κB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-κB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-κB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-κB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-κB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-κB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms.
Collapse
|
24
|
Li J, Ohliger J, Pei M. Significance of epigenetic landscape in cartilage regeneration from the cartilage development and pathology perspective. Stem Cells Dev 2014; 23:1178-94. [PMID: 24555773 DOI: 10.1089/scd.2014.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct regulatory role on gene expression. However, a thorough understanding of the environmental factors that initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regeneration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition, especially from the environmental factors' point of view. Progress in understanding epigenetic regulatory mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising therapeutic applications.
Collapse
Affiliation(s)
- Jingting Li
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
25
|
Resveratrol protects chondrocytes from apoptosis via altering the ultrastructural and biomechanical properties: an AFM study. PLoS One 2014; 9:e91611. [PMID: 24632762 PMCID: PMC3954736 DOI: 10.1371/journal.pone.0091611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease with high prevalence among older people, occurs from molecular or nanometer level and extends gradually to higher degrees of the ultrastructure of cartilage, finally resulting in irreversible structural and functional damages. This report aims to use atomic force microscopy (AFM) to investigate the protective effects of resveratrol (RV), a drug with good anti-inflammatory properties, on cellular morphology, membrane architecture, cytoskeleton, cell surface adhesion and stiffness at nanometer level in sodium nitroprusside (SNP)-induced apoptotic chondrocytes, a typical cellular OA model. CCK-8 assay showed that 100 μM RV significantly prevented SNP-induced cytotoxicity. AFM imaging and quantitative analysis showed that SNP potently induced chondrocytes changes including shrunk, round, lamellipodia contraction and decrease in adherent junctions among cells, as well as the destruction of biomechanics: 90% decrease in elasticity and 30% decrease in adhesion. In addition, confocal imaging analysis showed that SNP induced aggregation of the cytoskeleton and decrease in the expression of cytoskeletal proteins. More importantly, these SNP-induced damages to chondrocytes could be potently prevented by RV pretreatment. Interestingly, the biomechanical changes occurred before morphological changes could be clearly observed during SNP-induced apoptosis, indicating that the biomechanics of cellular membrane may be a more robust indicator of cell function. Collectively, our data demonstrate that RV prevents SNP-induced apoptosis of chondrocytes by regulating actin organization, and that AFM-based technology can be developed into a powerful and sensitive method to study the interaction mechanisms between chondrocytes and drugs.
Collapse
|