1
|
Haider S, Penfornis P, Claudio PP, McChesney JD, Chittiboyina AG. Balancing the efficacy vs. the toxicity of promiscuous natural products: Paclitaxel-based acid-labile lipophilic prodrugs as promising chemotherapeutics. Eur J Med Chem 2022; 227:113891. [PMID: 34656042 DOI: 10.1016/j.ejmech.2021.113891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
TumorSelect® is an anticancer technology that combines cytotoxics, nanotechnology, and knowledge of human physiology to develop innovative therapeutic interventions with minimal undesirable side effects commonly observed in conventional chemotherapy. Tumors have a voracious appetite for cholesterol which facilitates tumor growth and fuels their proliferation. We have transformed this need into a stealth delivery system to disguise and deliver anticancer drugs with the assistance of both the human body and the tumor cell. Several designer prodrugs are incorporated within pseudo-LDL nanoparticles, which carry them to tumor tissues, are taken up, internalized, transformed into active drugs, and inhibit cancer cell proliferation. Highly lipophilic prodrug conjugates of paclitaxel suitable for incorporation into the pseudo-LDL nanoparticles of the TumorSelect® delivery vehicle formulation were designed, synthesized, and evaluated in the panel of 24-h NCI-60 human tumor cell line screening to demonstrate the power of such an innovative approach. Taxane prodrugs, viz., ART-207 was synthesized by tethering paclitaxel to lipid moiety with the aid of a racemic solketal as a linker in cost-effective, simple, and straightforward synthetic transformations. In addition to the typical 24-h NCI screening protocol, these compounds were assessed for growth inhibition or killing of ovarian cell lines for 48 and 72h-time intervals and identified the long-lasting effectiveness of these lipophilic prodrugs. All possible, enantiomerically pure isomers of ART-207 were also synthesized, and cytotoxicities were biosimilar to racemic ART-207, suggesting that enantiopurity of linker has a negligible effect on cell proliferation. To substantiate further, ART-207 was evaluated for its in vivo tumor reduction efficacy by studying the xenograft model of ovarian cancer grown in SCID mice. Reduced weight loss (a measure of toxicity) in the ART-207 group was observed, even though it was dosed at 2.5x the paclitaxel equivalent of Abraxane®. As a result, our delineated approach is anticipated to improve patient quality of life, patient retention in treatment regimes, post-treatment rapid recovery, and overall patient compliance without compromising the efficacy of the cytotoxic promiscuous natural products.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemical synthesis
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Biological Products/chemical synthesis
- Biological Products/chemistry
- Biological Products/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Humans
- Hydrogen-Ion Concentration
- Mice
- Mice, Congenic
- Mice, Inbred NOD
- Mice, SCID
- Molecular Conformation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Paclitaxel/chemical synthesis
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Prodrugs/chemical synthesis
- Prodrugs/chemistry
- Prodrugs/pharmacology
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Patrice Penfornis
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA
| | - Pier Paolo Claudio
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA; Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | | | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
2
|
Benoit L, Mir O, Vialard F, Berveiller P. Cancer during Pregnancy: A Review of Preclinical and Clinical Transplacental Transfer of Anticancer Agents. Cancers (Basel) 2021; 13:1238. [PMID: 33799824 PMCID: PMC8000411 DOI: 10.3390/cancers13061238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
The occurrence of cancer during pregnancy is observed in 1 in 1000 pregnancies and is expected to increase given the trend of delaying childbearing. While breast cancer is the most common, the incidence of other cancers, such as cervical, ovarian, and lung cancers as well as hemopathies and melanomas, is also increasing. Thus, cancer occurrence in pregnant women raises questions of management during pregnancy and, especially, assessment of the treatment benefit-risk ratio to ensure optimal management for the mother while ensuring the safety of the fetus. Chemotherapy remains a cornerstone of cancer management. If the use of anticancer agents appears possible during pregnancy, while avoiding the first trimester, the extent of placental transfer of different anticancer agents varies considerably thereafter. Furthermore, the significant physiological pharmacokinetic variations observed in pregnant women may have an impact on the placental transfer of anticancer agents. Given the complexity of predicting placental transfer of anticancer agents, preclinical studies are therefore mandatory. The aim of this review was to provide updated data on in vivo and ex vivo transplacental transfer of anticancer agents used in the management of the most common pregnancy-associated cancers to better manage these highly complex cases.
Collapse
Affiliation(s)
- Laure Benoit
- Centre Hospitalier Intercommunal de Poissy Saint-Germain-en-Laye, Department of Gynecology and Obstetrics, 78300 Poissy, France;
| | - Olivier Mir
- Department of Ambulatory Cancer Care, Gustave Roussy, 94800 Villejuif, France;
| | - François Vialard
- Université Paris-Saclay, UMR 1198, INRAE, BREED, RHuMA, 78350 Jouy-en-Josas, France;
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Centre Hospitalier Intercommunal de Poissy Saint-Germain-en-Laye, Department of Genetics, 78300 Poissy, France
| | - Paul Berveiller
- Centre Hospitalier Intercommunal de Poissy Saint-Germain-en-Laye, Department of Gynecology and Obstetrics, 78300 Poissy, France;
- Université Paris-Saclay, UMR 1198, INRAE, BREED, RHuMA, 78350 Jouy-en-Josas, France;
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Ali S, Albekairi NA, Al-Enazy S, Shah M, Patrikeeva S, Nanovskaya TN, Ahmed MS, Rytting E. Formulation effects on paclitaxel transfer and uptake in the human placenta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102354. [PMID: 33429062 DOI: 10.1016/j.nano.2020.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 12/20/2020] [Indexed: 11/30/2022]
Abstract
Diagnosis and treatment of breast cancer in pregnancy can result in morbidity and mortality for the mother and fetus. Many new paclitaxel nanoformulations commercially available worldwide for breast cancer treatment are being adopted due to favorable dosing regimens and side effect profiles, but their transplacental transport and resultant fetal exposure remain unknown. Here, we examine three formulations: Taxol (paclitaxel dissolved in Kolliphor EL and ethanol); Abraxane (albumin nanoparticle); and Genexol-PM (polymeric micelle). In the ex vivo dually perfused human placental cotyledon, placental accumulation of Genexol-PM is higher than Taxol, and both nanoformulations have lower maternal concentrations of paclitaxel over time. In vitro studies of these formulations and fluorescent nanoparticle analogs demonstrate that Genexol-PM allows paclitaxel to overcome P-glycoprotein efflux, but Abraxane behaves as a free drug formulation. We anticipate that these findings will impact future development of rational and safe treatment strategies for pregnancy-associated breast cancer and other diseases.
Collapse
Affiliation(s)
- Shariq Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sanaalarab Al-Enazy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Mansi Shah
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Svetlana Patrikeeva
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Tatiana N Nanovskaya
- Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Mahmoud S Ahmed
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA
| | - Erik Rytting
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA; Maternal Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, USA.
| |
Collapse
|
4
|
Placental P-glycoprotein inhibition enhances susceptibility to Di-(2-ethylhexyl)-phthalate induced cardiac malformations in mice: A possibly promising target for congenital heart defects prevention. PLoS One 2019; 14:e0214873. [PMID: 31086358 PMCID: PMC6516658 DOI: 10.1371/journal.pone.0214873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 02/05/2023] Open
Abstract
Backgrounds Reducing toxicants transplacental rates could contribute to the prevention of congenital heart defects (CHDs). Placental P-glycoprotein (P-gp) plays a vital role in fetal toxicants exposure and subsequently affects the risk of toxicants-induced birth defects. However, data on the role of placental P-gp in decreasing toxicants-induced cardiac anomalies is extremely limited. This study aimed to explore the protective role of placental P-gp in reducing the risk of Di-(2-ethylhexyl)-phthalate (DEHP) induced cardiac anomalies in mice. Methods The C57BL mice were randomly divided into four groups: the vehicle group (corn oil, n = 10), 500mg/Kg DEHP group (n = 15), 3mg/Kg verapamil group (n = 10) and 500mg/Kg DEHP & 3mg/Kg verapamil group (n = 20). Pregnant dams in different group received respective intervention by gavage once daily from E6.5–14.5. Maternal weights were monitored every day and samples were collected at E15.5. HE staining was used to examine fetal cardiac malformations. Real-time quantitative PCR (RT-qPCR) and Western-Blot were applied to detect Nkx2.5/Gata4/Tbx5/Mef2c/Chf1 mRNA and protein expression, respectively. The mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) was also determined using RT-qPCR. Results Co-administration of verapamil and DEHP significantly elevated fetal cardiac malformation rates, in comparison with the DEHP group, the verapamil group and the vehicle group. Different phenotypes of cardiac anomalies, including septal defects and ventricular myocardium noncompaction, were noted both in the DEHP group and the DEHP & verapamil group. The ventricular myocardium noncompaction appeared to be more severe in the DEHP & verapamil group. Fetal cardiac PPARγ mRNA expression was notably increased and Gata4/Mef2c/Chf1 expression was markedly decreased in the DEHP & verapamil group. Conclusion Placental P-gp inhibition enhances susceptibility to DEHP induced cardiac malformations in mice.
Collapse
|
5
|
Gyawali A, Krol S, Kang YS. Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier. Biomol Ther (Seoul) 2019; 27:290-301. [PMID: 30971062 PMCID: PMC6513184 DOI: 10.4062/biomolther.2019.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [3H]paeonol in rat brain was about 6-fold higher than that of [14C]sucrose, the vascular space marker of BBB. The uptake of [3H]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [3H]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sokhoeurn Krol
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
6
|
Marei HE, Casalbore P, Althani A, Coccè V, Cenciarelli C, Alessandri G, Brini AT, Parati E, Bondiolotti G, Pessina A. Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth. Pharmaceutics 2019; 11:pharmaceutics11010045. [PMID: 30669623 PMCID: PMC6358986 DOI: 10.3390/pharmaceutics11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Patrizia Casalbore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, 00015 Rome, Italy.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy.
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, 20133 Milan, Italy.
| | - Anna T Brini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, 20133 Milan, Italy.
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy.
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
7
|
Leung G, Papademetriou M, Chang S, Arena F, Katz S. Interactions Between Inflammatory Bowel Disease Drugs and Chemotherapy. ACTA ACUST UNITED AC 2016; 14:507-534. [DOI: 10.1007/s11938-016-0109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
9
|
Bonomi A, Silini A, Vertua E, Signoroni PB, Coccè V, Cavicchini L, Sisto F, Alessandri G, Pessina A, Parolini O. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Res Ther 2015; 6:155. [PMID: 26315881 PMCID: PMC4552458 DOI: 10.1186/s13287-015-0140-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION In the context of drug delivery, mesenchymal stromal cells (MSCs) from bone marrow and adipose tissue have emerged as interesting candidates due to their homing abilities and capacity to carry toxic loads, while at the same time being highly resistant to the toxic effects. Amongst the many sources of MSCs which have been identified, the human term placenta has attracted particular interest due to its unique, tissue-related characteristics, including its high cell yield and virtually absent expression of human leukocyte antigens and co-stimulatory molecules. Under basal, non-stimulatory conditions, placental MSCs also possess basic characteristics common to MSCs from other sources. These include the ability to secrete factors which promote cell growth and tissue repair, as well as immunomodulatory properties. The aim of this study was to investigate MSCs isolated from the amniotic membrane of human term placenta (hAMSCs) as candidates for drug delivery in vitro. METHODS We primed hAMSCs from seven different donors with paclitaxel (PTX) and investigated their ability to resist the cytotoxic effects of PTX, to upload the drug, and to release it over time. We then analyzed whether the uptake and release of PTX was sufficient to inhibit proliferation of CFPAC-1, a pancreatic tumor cell line sensitive to PTX. RESULTS For the first time, our study shows that hAMSCs are highly resistant to PTX and are not only able to uptake the drug, but also release it over time. Moreover, we show that PTX is released from hAMSCs in a sufficient amount to inhibit tumor cell proliferation, whilst some of the PTX is also retained within the cells. CONCLUSION Taken together, for the first time our results show that placental stem cells can be used as vehicles for the delivery of cytotoxic agents.
Collapse
Affiliation(s)
- Arianna Bonomi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57 I-25124, Brescia, Italy.
| | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57 I-25124, Brescia, Italy.
| | - Patrizia Bonassi Signoroni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57 I-25124, Brescia, Italy.
| | - Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Loredana Cavicchini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute C. Besta, Milan, Italy.
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57 I-25124, Brescia, Italy.
| |
Collapse
|
10
|
Jun KY, Park SE, Liang JL, Jahng Y, Kwon Y. Benzo[b]tryptanthrin Inhibits MDR1, Topoisomerase Activity, and Reverses Adriamycin Resistance in Breast Cancer Cells. ChemMedChem 2015; 10:827-35. [DOI: 10.1002/cmdc.201500068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/09/2022]
|