1
|
Dahiphale SM, Dewani D, Dahiphale JM, Agrawal M, Dave A, Pajai S, Jyotsna G. Advances in Thromboprophylaxis for High-Risk Pregnancies: A Comprehensive Review of Current Strategies and Emerging Approaches. Cureus 2024; 16:e67758. [PMID: 39328704 PMCID: PMC11424216 DOI: 10.7759/cureus.67758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Thrombosis during pregnancy poses a significant clinical challenge due to its potential for severe maternal and fetal complications. The incidence of thromboembolic events in pregnant women is heightened by pregnancy-associated hypercoagulability, venous stasis, and endothelial changes, all of which contribute to an elevated risk. Effective thromboprophylaxis is essential to mitigate these risks and improve outcomes for both mother and child. This review provides a comprehensive evaluation of current thromboprophylaxis strategies, including pharmacologic interventions such as low-molecular-weight heparins (LMWHs) and unfractionated heparin (UFH) and nonpharmacologic measures like compression stockings and lifestyle modifications. Additionally, the review explores emerging approaches, including personalized medicine strategies, novel anticoagulants, and technology-enabled monitoring solutions. By integrating current evidence with emerging trends, this review aims to offer insights into optimizing thromboprophylaxis in high-risk pregnancies, ultimately contributing to improved clinical outcomes and guiding future research directions in this critical area of maternal healthcare.
Collapse
Affiliation(s)
- Swati M Dahiphale
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepika Dewani
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | | | - Manjusha Agrawal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Apoorva Dave
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sandhya Pajai
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Garapati Jyotsna
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Saeed D, Fuenmayor D, Niño Medina JA, Saleh I, Castiblanco Torres JD, Horn WL, Sosa Quintanilla MH, Leiva KE, Dannuncio V, Viteri M, Rivas M, Kumari N. Unraveling the Paradox: Can Anticoagulation Improve Outcomes in Patients With Heart Failure and Increased Bleeding Risk? Cureus 2024; 16:e57544. [PMID: 38707016 PMCID: PMC11068119 DOI: 10.7759/cureus.57544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Heart failure (HF) patients frequently present with comorbidities such as atrial fibrillation (AF) or other cardiovascular conditions, elevating their risk of thromboembolic events. Consequently, anticoagulation therapy is often considered for thromboprophylaxis, although its initiation in HF patients is complicated by concomitant bleeding risk factors. This review explores the paradoxical relationship between HF, increased bleeding risk, and the potential benefits of anticoagulation. Through an examination of existing evidence from clinical trials, observational studies, and meta-analyses, we aim to elucidate the role of anticoagulation in HF patients with increased bleeding risk. Despite guidelines recommending anticoagulation for certain HF patients with AF or other thromboembolic risk factors, uncertainty persists regarding the optimal management strategy for those at heightened risk of bleeding. The review discusses the pathophysiological mechanisms linking HF and thrombosis, challenges in bleeding risk assessment, and strategies to minimize bleeding risk while optimizing thromboprophylaxis. Shared decision-making between clinicians and patients is emphasized as essential for individualized treatment plans that balance the potential benefits of anticoagulation against the risk of bleeding complications. Furthermore, it examines emerging anticoagulant agents and their potential role in HF management, highlighting the need for further research to delineate optimal management strategies and inform evidence-based practice. In conclusion, while anticoagulation holds promise for improving outcomes in HF patients, careful consideration of patient-specific factors and ongoing research efforts are essential to optimize therapeutic strategies in this population.
Collapse
Affiliation(s)
- Danish Saeed
- Internal Medicine, Shaikh Zayed Medical Complex, Lahore, PAK
| | | | - Jose A Niño Medina
- Faculty of Legal and Political Sciences, Universidad de Carabobo, Valencia, VEN
- Faculty of Health Sciences, Universidad de Carabobo, Valencia, VEN
| | - Inam Saleh
- Pediatrics, University of Kentucky College of Medicine, Lexington, USA
| | | | - Wendys L Horn
- Faculty of Health Sciences, Universidad de Carabobo, Valencia, VEN
| | | | - Karen E Leiva
- General Medicine and Surgery, National Autonomous University of Honduras, Tegucigalpa, HND
| | | | - Maria Viteri
- Metabolic Syndrome Department, Hospital General Ambato, Ambato, ECU
| | - Miguel Rivas
- Faculty of Health Sciences, Universidad de Carabobo, Valencia, VEN
| | - Neelam Kumari
- Internal Medicine, Jinnah Medical & Dental College, Karachi, PAK
| |
Collapse
|
3
|
Woodland M, Thompson A, Lipford A, Goyal N, Schexnaildre JC, Mottamal M, Afosah DK, Al-Horani RA. New Triazole-Based Potent Inhibitors of Human Factor XIIa as Anticoagulants. ACS OMEGA 2024; 9:10694-10708. [PMID: 38463342 PMCID: PMC10918664 DOI: 10.1021/acsomega.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis. Consequently, inhibiting FXIIa could potentially offer a viable therapeutic approach for achieving effective and safer anticoagulation without the bleeding risks associated with the existing anticoagulants. Despite the potential, only a limited number of small molecule inhibitors targeting human FXIIa have been documented. Thus, we combined a small library of 32 triazole and triazole-like molecules to be evaluated for FXIIa inhibition by using a chromogenic substrate hydrolysis assay under physiological conditions. Initial screening at 200 μM involved 18 small molecules, revealing that 4 molecules inhibited FXIIa more than 20%. In addition to being the most potent inhibitor identified in the first round, inhibitor 8 also exhibited a substantial margin of selectivity against related serine proteases, including factors XIa, Xa, and IXa. However, the molecule also inhibited thrombin with a similar potency. It also prolonged the clotting time of human plasma, as was determined in the activated partial thromboplastin time and prothrombin time assays. Subsequent structure-activity relationship studies led to the identification of several inhibitors with submicromolar activity, among which inhibitor 22 appears to demonstrate significant selectivity not only over factors IXa, Xa, and XIa, but also over thrombin. In summary, this study introduces novel triazole-based small molecules, specifically compounds 8 and 22, identified as potent and selective inhibitors of human FXIIa. The aim is to advance these inhibitors for further development as anticoagulants to provide a more effective and safer approach to preventing and/or treating thromboembolic diseases.
Collapse
Affiliation(s)
- Ma’Lik
D. Woodland
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Anthony Thompson
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Amanda Lipford
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - John C. Schexnaildre
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
4
|
Cui FP, Miao Y, Liu AX, Deng YL, Liu C, Zhang M, Zeng JY, Li YF, Liu HY, Liu CJ, Zeng Q. Associations of exposure to disinfection by-products with blood coagulation parameters among women: Results from the Tongji reproductive and environmental (TREE) study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115741. [PMID: 38029584 DOI: 10.1016/j.ecoenv.2023.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.
Collapse
Affiliation(s)
- Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hai-Yi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Extracorporeal Membrane Oxygenation-Induced Hemolysis: An In Vitro Study to Appraise Causative Factors. MEMBRANES 2021; 11:membranes11050313. [PMID: 33923070 PMCID: PMC8145168 DOI: 10.3390/membranes11050313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
In vitro hemolysis testing is commonly used to determine hemocompatibility of ExtraCorporeal Membrane Oxygenation (ECMO). However, poor reproducibility remains a challenging problem, due to several unidentified influencing factors. The present study investigated potential factors, such as flow rates, the use of anticoagulants, and gender of blood donors, which could play a role in hemolysis. Fresh human whole blood was anticoagulated with either citrate (n = 6) or heparin (n = 12; 6 female and 6 male blood donors). Blood was then circulated for 360 min at 4 L/min or 1.5 L/min. Regardless of flow rate conditions, hemolysis remained unchanged over time in citrated blood, but significantly increased after 240 min circulation in heparinized blood (p ≤ 0.01). The ratio of the normalized index of hemolysis (NIH) of heparinized blood to citrated blood was 11.7-fold higher at 4 L/min and 16.5–fold higher at 1.5 L/min. The difference in hemolysis between 1.5 L/min and 4 L/min concurred with findings of previous literature. In addition, the ratio of NIH of male heparinized blood to female was 1.7-fold higher at 4 L/min and 2.2-fold higher at 1.5 L/min. Our preliminary results suggested that the choice of anticoagulant and blood donor gender could be critical factors in hemolysis studies, and should be taken into account to improve testing reliability during ECMO.
Collapse
|
6
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
7
|
Han AR, Han JW, Lee SK. Inherited thrombophilia and anticoagulant therapy for women with reproductive failure. Am J Reprod Immunol 2020; 85:e13378. [DOI: 10.1111/aji.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Ae Ra Han
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology Myuonggok Medical Research Center Konyang University College of Medicine Daejeon Korea
| |
Collapse
|
8
|
Ghosh S, Gayen P, Jan S, Kishore AV, Kumar V, Mallick AM, Mukherjee A, Nandi SK, Sinha Roy R. Bioinspired Non-Immunogenic Multifunctional Sealant for Efficient Blood Clotting and Suture-Free Wound Closure. ACS Biomater Sci Eng 2020; 6:6378-6393. [PMID: 33449650 DOI: 10.1021/acsbiomaterials.0c01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineering bioinspired peptide-based molecular medicine is an emerging paradigm for the management of traumatic coagulopathies and inherent bleeding disorder. A hemostat-based strategy in managing uncontrolled bleeding is limited due to the lack of adequate efficacy and clinical noncompliance. In this study, we report an engineered adhesive peptide-based hybrid regenerative medicine, sealant 5, which is designed integrating the structural and functional features of fibrin and mussel foot-pad protein. AFM studies have revealed that sealant 5 (55.8 ± 6.8 nN adhesive force) has higher adhesive force than fibrin (46.4 ± 7.3 nN adhesive force). SEM data confirms that sealant 5 retains its network-like morphology both at 37 and 60 °C, inferring its thermal stability. Both sealant 5 and fibrin exhibit biodegradability in the presence of trypsin, and sealant 5 also showed biocompatibility in the presence of fibroblast cells. Engineered sealant 5 efficiently promotes hemostasis with enhanced adhesiveness and less blood-loss than fibrin. In vivo data suggests that in heparinized conditions, sealant 5 ceases bleeding at 212.3 ± 15.1 s, whereas fibrin halts bleeding at 294.3 ± 21.4 s and blood-loss is ∼4-fold less in sealant 5 than in fibrin. In a heparinized system, sealant 5 facilitates faster blood-clotting than fibrin (∼82 s faster) and RADA-16, a reported peptide-based sealant (∼113 s faster). Additionally, in the case of sealant 5, the process of clotting mimicry-like fibrin is independent of the body's own coagulation system. Sealant 5 efficiently halts bleeding for both external and internal wounds, even for a heparinized system overcoming the bacterial infection. ELISA data and PMBC cell proliferation data support the non-immunogenic feature of sealant 5. Though fibrin and sealant 5 have exhibited comparable efficacy in suture-free wound closure, in vivo H&E staining images have revealed infiltration of very few immune cells as well as the presence of abundant collagen formation in the case of sealant 5-treated wound. Such nature-inspired non-immunogenic sealants offer exciting possibilities for the treatment of uncontrolled bleeding vis-à-vis wound closure.
Collapse
Affiliation(s)
- Snehasish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Paramita Gayen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Anyam Vijay Kishore
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Vinod Kumar
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
9
|
Garg SS, Gupta J, Sharma S, Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur J Pharm Sci 2020; 152:105424. [DOI: 10.1016/j.ejps.2020.105424] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
|
10
|
Cho I. A Review of the Medical Challenges of Using Direct Oral Anticoagulants in Real-World Practice. Ther Innov Regul Sci 2020; 54:793-802. [DOI: 10.1007/s43441-019-00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
|
11
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
12
|
Bleeding related to dental treatment in patients taking novel oral anticoagulants (NOACs): a retrospective study. Clin Oral Investig 2018; 23:477-484. [DOI: 10.1007/s00784-018-2458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
|
13
|
Cell Type-Specific Mechanisms in the Pathogenesis of Ischemic Stroke: The Role of Apoptosis Signal-Regulating Kinase 1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2596043. [PMID: 29743976 PMCID: PMC5883936 DOI: 10.1155/2018/2596043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/10/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
Abstract
Stroke has become a more common disease worldwide. Despite great efforts to develop treatment, little is known about ischemic stroke. Cerebral ischemia activates multiple cascades of cell type-specific pathomechanisms. Ischemic brain injury consists of a complex series of cellular reactions in various cell types within the central nervous system (CNS) including platelets, endothelial cells, astrocytes, neutrophils, microglia/macrophages, and neurons. Diverse cellular changes after ischemic injury are likely to induce cell death and tissue damage in the brain. Since cells in the brain exhibit different functional roles at distinct time points after injury (acute/subacute/chronic phases), it is difficult to pinpoint genuine roles of cell types after brain injury. Many experimental studies have shown the association of apoptosis signal-regulating kinase 1 (ASK1) with cellular pathomechanisms after cerebral ischemia. Blockade of ASK1, by either pharmacological or genetic manipulation, leads to reduced ischemic brain injury and subsequent neuroprotective effects. In this review, we present the cell type-specific pathophysiology of the early phase of ischemic stroke, the role of ASK1 suggested by preclinical studies, and the potential use of ASK suppression, either by pharmacologic or genetic suppression, as a promising therapeutic option for ischemic stroke recovery.
Collapse
|