1
|
Wang RJ, Ni YJ, Liu YQ. Hesperetin Increases Lifespan and Antioxidant Ability Correlating with IIS, HSP, mtUPR, and JNK Pathways of Chronic Oxidative Stress in Caenorhabditis elegans. Int J Mol Sci 2024; 25:13148. [PMID: 39684858 DOI: 10.3390/ijms252313148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in Caenorhabditis elegans (C. elegans) using low-concentration H2O2 and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed C. elegans. Hst significantly upregulated daf-18, daf-16, gst-2, gst-3, gst-4, gst-39, hsp-16.11, sip-1, clpp-1, and dve-1 and downregulated ist-1 and kgb-1 mRNAs in stressed C. elegans. These genes are involved in the insulin/insulin-like growth factor-1 signaling (IIS), heat shock protein (HSP), mitochondrial unfolded protein response (mtUPR), and c-Jun N-terminal kinase (JNK) pathways. In summary, Hst increases lifespan and antioxidant ability, correlating with these pathways, during chronic oxidative stress in C. elegans.
Collapse
Affiliation(s)
- Run-Jia Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ya-Jing Ni
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Genistein Promotes Anti-Heat Stress and Antioxidant Effects via the Coordinated Regulation of IIS, HSP, MAPK, DR, and Mitochondrial Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010125. [PMID: 36670986 PMCID: PMC9855074 DOI: 10.3390/antiox12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
To determine the anti-heat stress and antioxidant effects of genistein and the underlying mechanisms, lipofuscin, reactive oxygen species (ROS), and survival under stress were first detected in Caenorhabditis elegans (C. elegans); then the localization and quantification of the fluorescent protein was determined by detecting the fluorescently labeled protein mutant strain; in addition, the aging-related mRNAs were detected by applying real-time fluorescent quantitative PCR in C. elegans. The results indicate that genistein substantially extended the lifespan of C. elegans under oxidative stress and heat conditions; and remarkably reduced the accumulation of lipofuscin in C. elegans under hydrogen peroxide (H2O2) and 35 °C stress conditions; in addition, it reduced the generation of ROS caused by H2O2 and upregulated the expression of daf-16, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, and eat-2, whereas it downregulated the expression of age-1 and daf-2 in C. elegans; similarly, it upregulated the expression of daf-16, sod-3, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, jnk-1 skn-1, and eat-2, whereas it downregulated the expression of age-1, daf-2, gst-4, and hsp-12.6 in C. elegans at 35 °C; moreover, it increased the accumulation of HSP-16.2 and SKN-1 proteins in nematodes under 35 °C and H2O2 conditions; however, it failed to prolong the survival time in the deleted mutant MQ130 nematodes under 35 °C and H2O2 conditions. These results suggest that genistein promote anti-heat stress and antioxidant effects in C. elegans via insulin/-insulin-like growth factor signaling (IIS), heat shock protein (HSP), mitogen-activated protein kinase (MAPK), dietary restriction (DR), and mitochondrial pathways.
Collapse
|
3
|
Xu T, Tao M, Li R, Xu X, Pan S, Wu T. Longevity-promoting properties of ginger extract in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. Food Funct 2022; 13:9893-9903. [PMID: 36052763 DOI: 10.1039/d2fo01602h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ginger is a traditional medicinal and edible plant with multiple health-promoting properties. Nevertheless, the effects and potential mechanism of ginger on antiaging remain unknown. The aim of this study was to comprehend the antiaging effects and potential mechanism of ginger in Caenorhabditis elegans (C. elegans). The current findings showed that the lifespan of C. elegans was prolonged by 23.16% with the supplementation of 60 μg mL-1 ginger extract (GE), and the extension of lifespan was mainly attributed to the major bioactive compounds in GE, 6-, 8-, 10-gingerol and 6-, 8-, 10-shogaol. Subsequently, GE promoted healthy aging by improving nematode movement and attenuating lipofuscin accumulation, and enhanced stress tolerance by up-regulating the expression of stress-related genes and activating DAF-16 and SKN-1. Moreover, lifespan assays of relative mutants revealed that GE mediated extension of lifespan via the insulin/IGF-1 signaling (IIS) pathway. In summary, GE endowed nematodes (C. elegans) with longevity and stress resistance in an IIS pathway dependent manner.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
4
|
Wu SJ, Tung YJ, Yen MH, Ng LT. Chemical composition and anti-aging effects of standardized herbal chicken essence on D-galactose- induced senescent mice. Front Nutr 2022; 9:989067. [PMID: 36176640 PMCID: PMC9513449 DOI: 10.3389/fnut.2022.989067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to examine the chemical and anti-aging properties of chicken essence (CE) prepared with Sesamum indicum, Angelica acutiloba, and Zingiber officinale (HCE). HCE was analyzed for nutritional and phytochemical composition, and its anti-aging effects were investigated on the D-galactose (Gal)-induced aging mice. Results showed that HCE possessed significantly higher calories and contents of valine and total phenols than CE; it also contained significant amounts of ferulic acid, sesamin, and sesamolin. HCE significantly decreased MDA and NO levels in serum and liver and increased liver GSH levels in the D-Gal-induced mice. HCE greatly enhanced SOD and CAT activities in serum and liver, and liver GPx activity, as well as upregulating SIRT1 expression and downregulating TNF-α, IL-1β, IL-6, iNOS, Cox-2, and MCP-1 expression in liver tissues. This study demonstrates that HCE was effective in suppressing the aging process through enhancing antioxidant and anti-inflammatory activities and modulating the aging-related gene expression.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Jou Tung
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- *Correspondence: Lean-Teik Ng
| |
Collapse
|
5
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, Cetin Z, Saygili EI. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4748447. [PMID: 35585878 PMCID: PMC9110206 DOI: 10.1155/2022/4748447] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The world's population is ageing at an accelerated pace. Ageing is a natural, physiological but highly complex and multifactorial process that all species in the Tree of Life experience over time. Physical and mental disabilities, and age-related diseases, would increase along with the increasing life expectancy. Ginger (Zingiber officinale) is a plant that belongs to the Zingiberaceae family, native to Southeast Asia. For hundreds of years, ginger has been consumed in various ways by the natives of Asian countries, both as culinary and medicinal herb for the treatment of many diseases. Mounting evidence suggests that ginger can promote healthy ageing, reduce morbidity, and prolong healthy lifespan. Ginger, a well-known natural product, has been demonstrated to possess antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as an outstanding antiviral activity due to a high concentration of antiviral compounds. In this review, the current evidence on the potential role of ginger and its active compounds in the prevention of ageing is discussed.
Collapse
Affiliation(s)
- Mehtap Ozkur
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Christina Vasileiou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Zafer Cetin
- Department of Medical Biology, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Biological and Biomedical Sciences, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Molecular Medicine, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| |
Collapse
|
7
|
Hughes S, Kolsters N, van de Klashorst D, Kreuter E, Berger Büter K. An extract of Rosaceae, Solanaceae and Zingiberaceae increases health span and mobility in Caenorhabditis elegans. BMC Nutr 2022; 8:5. [PMID: 35027085 PMCID: PMC8756710 DOI: 10.1186/s40795-022-00498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Background Members of the Rosaceae, Solanaceae and Zingiberaceae families which include fruits such as cherries, tomatoes and ginger are known to have health promoting effects. There is growing interest in consuming these “functional foods” as a means to increase health and healthy ageing. However, many studies explore the effect of these foods in isolation, not as a blend of multiple functional foods. Methods In this study, an extract containing the dried berries, fruits, and roots of members of these families was prepared, which we called Bioact®180. The nematode Caenorhabditis elegans was used to evaluate the effects of Bioact®180 on lifespan and health endpoints, including muscle and mitochondria structure and locomotion. Results Exposure to the 1000 µg/mL of Bioact®180 extract, containing 4% total phenols, were healthier, as observed by an increase in mean lifespan with and small but significant increase in maximal lifespan. Nematodes exposed to Bioact®180 displayed better mobility in mid-life stages as well as enhanced mitochondrial morphology, which was more comparable to younger animals, suggesting that these worms are protected to some degree from sarcopenia. Conclusions Together, our findings reveal that Bioact®180, a blend of fruits and roots from Rosaceae, Solanaceae and Zingiberaceae family members has anti-aging effects. Bioact®180 promotes health and lifespan extension in C. elegans, corresponding to functional improvements in mobility.
Collapse
Affiliation(s)
- Samantha Hughes
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands.,Department of Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, Netherlands
| | - Nikki Kolsters
- BioCentre, HAN University of Applied Sciences, 6525EM, Nijmegen, Netherlands
| | | | - Emanuel Kreuter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland
| | - Karin Berger Büter
- Bioactive Botanicals Swiss AG, Emeligarten 6, 8592, Uttwil, Switzerland.
| |
Collapse
|
8
|
Naß J, Abdelfatah S, Efferth T. The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153598. [PMID: 34111615 DOI: 10.1016/j.phymed.2021.153598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Additionally, stress assays are used to mimic stress or depressed state. METHODS We examined the antioxidant activity of UA in Caenorhabditis elegans wildtype and skn-1- and prdx2-deficient strains by H2DCF-DA and juglone assays as well as osmotic and heat stress assays. Additionally, we analyzed the binding of UA to human PRDX2 and Skn-1 proteins by molecular docking and microscale thermophoresis. RESULTS UA exerted strong antioxidant activities. Additionally, induction of stress resistance towards osmotic and heat stress was observed. qRT-PCR revealed that UA upregulated the gene expression of skn-1 and prdx2. Molecular docking studies supported these findings. CONCLUSION Our findings implicate that the strong antioxidant activity of UA may exert anti-depressive effects by its interaction with the Skn-1 transcription factor, which is part of a detoxification network, and the antioxidant PRDX2 protein, which protects the organism from the detrimental effects of radical oxygen species.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Naß J, Abdelfatah S, Efferth T. Induction of stress resistance and extension of lifespan in Chaenorhabditis elegans serotonin-receptor knockout strains by withanolide A. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153482. [PMID: 33611213 DOI: 10.1016/j.phymed.2021.153482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Approximately 300 million people worldwide suffer from depression. The COVID-19 crisis may dramatically increase these numbers. Severe side effects and resistance development limit the use of standard antidepressants. The steroidal lactone withanolide A (WA) from Withania somnifera may be a promising alternative. Caenorhabditis elegans was used as model to explore WA's anti-depressive and anti-stress potential. METHODS C. elegans wildtype (N2) and deficient strains (AQ866, DA1814, DA2100, DA2109 and MT9772) were used to assess oxidative, osmotic or heat stress as measured by generation of reactive oxygen species (ROS), determination of lifespan, and mRNA expression of serotonin receptor (ser-1, ser-4, ser-7) and serotonin transporter genes (mod-5). The protective effect of WA was compared to fluoxetine as clinically established antidepressant. Additionally, WA's effect on lifespan was determined. Furthermore, the binding affinities and pKi values of WA, fluoxetine and serotonin as natural ligand to Ser-1, Ser-4, Ser-7, Mod-5 and their human orthologues proteins were calculated by molecular docking. RESULTS Baseline oxidative stress was higher in deficient than wildtype worms. WA and fluoxetine reduced ROS levels in all strains except MT9772. WA and fluoxetine prolonged survival times in wildtype and mutants under osmotic stress. WA but not fluoxetine increased lifespan of all heat-stressed C. elegans strains except DA2100. Furthermore, WA but not fluoxetine extended lifespan in all non-stressed C. elegans strains. WA also induced mRNA expression of serotonin receptors and transporters in wildtype and mutants. WA bound with higher affinity and lower pKi values to all C. elegans and human serotonin receptors and transporters than serotonin, indicating that WA may competitively displaced serotonin from the binding pockets of these proteins. CONCLUSION WA reduced stress and increased lifespan by ROS scavenging and interference with the serotonin system. Hence, WA may serve as promising candidate to treat depression.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
10
|
Han X, Zhang Y, Liang Y, Zhang J, Li M, Zhao Z, Zhang X, Xue Y, Zhang Y, Xiao J, Chu L. 6-Gingerol, an active pungent component of ginger, inhibits L-type Ca 2+ current, contractility, and Ca 2+ transients in isolated rat ventricular myocytes. Food Sci Nutr 2019; 7:1344-1352. [PMID: 31024707 PMCID: PMC6475727 DOI: 10.1002/fsn3.968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Ginger has been widely used as a flavor, food, and traditional medicine for centuries. 6-Gingerol (6-Gin) is the active components of ginger and offers some beneficial effects on cardiovascular diseases. Here, the effects of 6-Gin on L-type Ca2+ current (ICa-L), contractility, and the Ca2+ transients of rat cardiomyocytes, were investigated via patch-clamp technique and the Ion Optix system. The 6-Gin decreased the ICa-L of normal and ischemic ventricular myocytes by 58.17 ± 1.05% and 55.22 ± 1.34%, respectively. 6-Gin decreased ICa-L in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 31.25 μmol/L. At 300 μmol/L, 6-Gin reduced the cell shortening by 48.87 ± 5.44% and the transients by 42.5 ± 9.79%. The results indicate that the molecular mechanisms underlying the cardio-protective effects of 6-Gin may because of a decreasing of intracellular Ca2+ via the inhibition of ICa-L and contractility in rat cardiomyocytes.
Collapse
Affiliation(s)
- Xue Han
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yuanyuan Zhang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yingran Liang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Jianping Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Mengying Li
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Zhifeng Zhao
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Xuan Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yurun Xue
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Ying Zhang
- School of Basic MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Jingkai Xiao
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Li Chu
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Integrative Medicine on Liver‐Kidney PatternsShijiazhuangChina
| |
Collapse
|