1
|
Wang H, Gao L, Zhao C, Fang F, Liu J, Wang Z, Zhong Y, Wang X. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int Urol Nephrol 2024; 56:2623-2633. [PMID: 38498274 DOI: 10.1007/s11255-024-03989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
| |
Collapse
|
2
|
Wang H, Liu J, Fang F, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Losartan ameliorates renal fibrosis by inhibiting tumor necrosis factor signal pathway. Nefrologia 2024; 44:139-149. [PMID: 38697694 DOI: 10.1016/j.nefroe.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/03/2023] [Indexed: 05/05/2024] Open
Abstract
Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-β1 (TGF-β1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China.
| |
Collapse
|
3
|
Xiao M, Li X, Zhang X, Duan X, Lin H, Liu S, Sui G. Assessment of cancer-related signaling pathways in responses to polystyrene nanoplastics via a kidney-testis microfluidic platform (KTP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159306. [PMID: 36216064 DOI: 10.1016/j.scitotenv.2022.159306] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
As a new type of environmental pollutants, micro/nano plastics (MPs/NPs) derived from plastic products are commonly contact in daily life and lead to some serious health issues. The toxicity effects of MPs/NPs on the human body have aroused wide concerns. Although MPs/NPs have been reported to be transmitted into the kidney and reproductive organs, the molecular mechanisms of MPs/NPs toxicity remain unclear due to the lack of a physiologically relevant organ-organ linking platform in vitro. Here, we present a kidney-testis microfluidic platform (KTP) with NPs exposure that enables the communication of kidney and testis chambers and reproduces endothelium-linked chambers to simulate the state in vivo. The function of KTP was assessed by cell counting kit (CCK-8), tight junction protein claudin-2 and glucose consumption. Results revealed that MPs/NPs entered the kidney and testis via endocytosis. Immunofluorescence and ELISA analysis were performed on KTP at 200 μg/mL PS-NP to identify the dysregulated proteins on cancer-related signaling pathways, including the MAPK signaling pathway (RTK, RAS, ERK, JNK, P38, NRF2, TNF-α, and TNF-α-R) and the PI3K-AKT signaling pathway (PI3K, AKT, MDM2, P53, and ΒΑD). This multi-organ platform (KTP) contributes to clarifying cancer pathways triggered by MPs/NPs exposure and provides a promising method for assessing diseases induced by environmental pollutants.
Collapse
Affiliation(s)
- Mingming Xiao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinran Li
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Houwei Lin
- Jiaxing University, Department of Pediatric Surgery, Women and Children Hospital, 2468 East Zhonghuan Road, 314050 Jiaxing, China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, 200438 Shanghai, China.
| |
Collapse
|
4
|
Abdel-Rahman Mohamed A, El-Kholy SS, Dahran N, El Bohy KM, Moustafa GG, Saber TM, Metwally MMM, Gaber RA, Alqahtani LS, Mostafa-Hedeab G, El-Shetry ES. Scrutinizing pathways of Nicotine effect on renal Alpha-7 Nicotinic Acetylcholine receptor and Mitogen-activated protein kinase (MAPK) expression in Ehrlich ascites carcinoma-bearing Mice: role of Chlorella vulgaris. Gene 2022; 837:146697. [PMID: 35764235 DOI: 10.1016/j.gene.2022.146697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
Nicotine is one of several physiologically stable and active chemicals found in tobacco. The mechanism through which nicotine causes kidney damage is still obscure. As a result, the goal of this research was to investigate how oral nicotine intake can lead to kidney damage. Naturaly occurring superfood green algae are immense supplements help us using extra chemicals during cancer prevalence if the patient is exposed to nicotine. Hence, the mitigating role of Chlorella vulgaris extract (CVE) against nicotine-nephrotoxic impact in Ehrlich ascites carcinoma (EAC)-bearing mice was studied. For this purpose, four groups of Swiss female mice were assigned, nicotine group (NIC) (100 µg/ml/kg), CVE group (100 mg/kg), CVE+Nicotine, and a control group. Renal dysfunction was evaluated by estimating serum biomarkers ofrenal damage. The expression pattern of Nf-KB, MAPK, P53, and α7-nAchR, lipid peroxidation biomarker, and antioxidant enzyme activities were evaluated in kidney tissue. Also, micro-morphometric examination and apoptosis immunohistochemical reactivity of kidney tissue were applied. The obtained results indicated up-regulation of all estimated genes and oxidative stress. Moreover, a significant (P<0.05) increment in the apoptotic marker Caspase-3 and declined BCL-2 proteins were recorded. In serum, a significant (P<0.05) elevation of urea, creatinine, TNF-α, IL-1β, and Kim-1 were evident. Histological investigation reinforced the aforementioned data, revealing structural changes involving the tubules, glomeruli, and interstitium of mice kidneys. CVE may be a strong contender for protecting renal tissue damage since it reduces renal tissue injury and oxidative stress. Cancer patients who regularly use nicotine through direct smoking or second-hand exposure can benefit from CVE usage as a dietary supplement.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology department & Health Research Unit, Medical College, Jouf University, Saudi Arabia
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
5
|
Huo C, Wang L, Wang Q, Yang Y, Chen B. Hydroxysafflor Yellow A inhibits the viability and migration of vascular smooth muscle cells induced by serum from rats with chronic renal failure via inactivation of the PI3K/Akt signaling pathway. Exp Ther Med 2021; 22:850. [PMID: 34149896 PMCID: PMC8210222 DOI: 10.3892/etm.2021.10282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
It has been reported that the viability and migration of vascular smooth muscle cells contributes to arteriovenous fistula stenosis. Hydroxysafflor Yellow A (HSYA) has been demonstrated to inhibit the viability and migration of VSMCs by regulating Akt signaling. The present study aimed to investigate the role of HSYA on the viability and migration of human umbilical vein smooth muscle cells (HUVSMCs) following stimulation using serum from rats with chronic renal failure (CRF), and to determine the effects of HSYA on PI3K/Akt signaling. Wistar rats were randomly divided into two groups, control and CRF groups. Serum from each group was collected to stimulate the HUVSMCs. Cell Counting Kit-8 and wound healing assays were performed to assess cell viability and migration, respectively. Flow cytometry analysis was performed to assess apoptosis, and western blot analysis was performed to detect protein expression levels of PI3K and Akt. Nitric oxide (NO) production was measured using the Nitrate/Nitrite assay kit. The results demonstrated that serum from CRF rats significantly enhanced cell viability, migration and apoptosis, the effects of which were reversed following treatment with HSYA. In addition, CRF serum decreased NO and endothelial NO synthase expression, whilst increasing the protein expression levels of PI3K and phosphorylated-Akt in HUVSMCs. Notably, treatment with HSYA markedly restored NO production and inactivated the PI3K/Akt signaling pathway. Furthermore, the PI3K/Akt inhibitor, AMG511, exerted similar effects to HSYA. Taken together, the results of the present study suggest that HSYA suppresses cell viability and migration in the presence of CRF serum by inactivating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Changliang Huo
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu 222000, P.R. China
| | - Li Wang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu 222000, P.R. China
| | - Qiuli Wang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu 222000, P.R. China
| | - Yanbo Yang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu 222000, P.R. China
| | - Bo Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
6
|
Tian S, Yang X, Wang J, Luo J, Guo H. 1,25-(OH) 2D 3 ameliorates renal interstitial fibrosis in UUO rats through the AMPKα/mTOR pathway. J Int Med Res 2021; 49:300060520981360. [PMID: 33530801 PMCID: PMC7871069 DOI: 10.1177/0300060520981360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective To investigate the effects of 1,25(OH)2D3 on renal fibrosis associated with the AMP-activated protein kinase (AMPK)α/mechanistic target of rapamycin (mTOR) signalling pathway in a rat model of unilateral ureteral obstruction (UUO). Methods A total of 54 male Sprague Dawley rats were randomly divided into three groups: sham-operation group, UUO group, and UUO plus calcitriol (3 ng/100 g) group. Renal tissue was excised for histological examination by immunohistochemistry and Western blot, and for gene expression analysis using real-time polymerase chain reaction. Results 1,25(OH)2D3 enhanced AMPKα levels, inhibited mTOR levels and slowed the development of interstitial fibrosis in kidney tissue. Compared with the UUO plus calcitriol group, UUO rats demonstrated more severe renal damage characterized by marked tubular atrophy, interstitial fibrosis and significant induction of fibrogenic transforming growth factor-β1 and increased extra-cellular matrix proteins (α-smooth muscle actin and collagen type III), and decreased E-cadherin. Conclusion Treatment with 1,25(OH)2D3 altered the AMPKα/mTOR signalling pathway to suppress excessive fibroblast activation observed in UUO rats. This may serve as a novel mechanism to ameliorate renal dysfunction and fibrotic lesions.
Collapse
Affiliation(s)
- Shasha Tian
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaopeng Yang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianwu Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui Guo
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Nephrology, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Choi HS, Kim IJ, Kim CS, Ma SK, Scholey JW, Kim SW, Bae EH. Angiotensin-[1-7] attenuates kidney injury in experimental Alport syndrome. Sci Rep 2020; 10:4225. [PMID: 32144368 PMCID: PMC7060323 DOI: 10.1038/s41598-020-61250-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-[1–7] (Ang-[1–7]) antagonize the actions of the renin-angiotensin-system via the Mas receptor and thereby exert renoprotective effects. Murine recombinant angiotensin-converting enzyme (ACE)2 was reported to show renoprotective effects in an experimental Alport syndrome model; however, the protective effect of direct administration of Ang-[1–7] is unknown. Here, we used Col4a3−/− mice as a model of Alport syndrome, which were treated with saline or Ang- [1–7]; saline-treated wild-type mice were used as a control group. The mice were continuously infused with saline or Ang-[1–7] (25 μg/kg/h) using osmotic mini-pumps. Col4a3−/− mice showed increased α-smooth muscle actin (SMA), collagen, and fibronectin expression levels, which were attenuated by Ang-[1–7] treatment. Moreover, Ang-[1–7] alleviated activation of transforming growth factor-β/Smad signaling, and attenuated the protein expression of ED-1 and heme oxygenase-1, indicating reduction of renal inflammation. Ang-[1–7] treatment further reduced the expression levels of inflammatory cytokines and adhesion molecules and attenuated apoptosis in human kidney cells. Finally, Ang-[1–7] downregulated TNF-α converting enzyme and upregulated ACE2 expression. Thus, treatment with Ang-[1–7] altered the ACE2-Ang-[1–7]-Mas receptor axis in the kidneys of Col4a3−/− mice to attenuate the nephropathy progression of Alport syndrome.
Collapse
Affiliation(s)
- Hong Sang Choi
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - In Jin Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Seong Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - James W Scholey
- Department of Medicine and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Soo Wan Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| | - Eun Hui Bae
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
8
|
Sherif IO, Al-Shaalan NH, Sabry D. Ginkgo Biloba Extract Alleviates Methotrexate-Induced Renal Injury: New Impact on PI3K/Akt/mTOR Signaling and MALAT1 Expression. Biomolecules 2019; 9:biom9110691. [PMID: 31684190 PMCID: PMC6920877 DOI: 10.3390/biom9110691] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
Renal injury induced by the chemotherapeutic agent methotrexate (MTX) is a serious adverse effect that has limited its use in the treatment of various clinical conditions. The antioxidant activity of Ginkgo biloba extract (GB) was reported to mitigate renal injury induced by MTX. Our research was conducted to examine the nephroprotective role of GB versus MTX-induced renal injury for the first time through its impact on the regulation of phosphatidylinositol 3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling together with the renal level of TGF-β mRNA and long non-coding RNA-metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) expression. A group of adult rats was intraperitoneally (ip) injected with MTX 20 mg/kg as a single dose to induce kidney injury (MTX group). The other group of rats was orally administered with GB 60 mg/kg every day for 10 days (GB+ MTX group). The MTX increased the serum creatinine and urea levels, renal TGF-β mRNA and MALAT1 expression, in addition to dysregulation of the PI3K/Akt/mTOR signaling when compared with normal control rats that received saline only (NC group). Moreover, renal damage was reported histopathologically in the MTX group. The GB ameliorated the renal injury induced by MTX and reversed the changes of these biochemical analyses. The involvement of PI3K/Akt/mTOR signaling and downregulation of TGF-β mRNA and MALAT1 renal expressions were firstly reported in the nephroprotective molecular mechanism of GB versus MTX-induced renal injury.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
9
|
Yuan X, Wang X, Li Y, Li X, Zhang S, Hao L. Aldosterone promotes renal interstitial fibrosis via the AIF‑1/AKT/mTOR signaling pathway. Mol Med Rep 2019; 20:4033-4044. [PMID: 31545432 PMCID: PMC6797939 DOI: 10.3892/mmr.2019.10680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/05/2019] [Indexed: 01/25/2023] Open
Abstract
A number of studies have shown that aldosterone serves an important role in promoting renal interstitial fibrosis, although the specific mechanism remains to be elucidated. A previous study revealed that the fibrotic effect of aldosterone was associated with the expression of allograft inflammatory factor 1 (AIF‑1) in RAW264.7 macrophage cells, in a time‑ and concentration‑dependent manner. However, the exact mechanism through which aldosterone promotes renal interstitial fibrosis remains unknown. In the present study, the effects of aldosterone on renal inflammatory cell infiltration, collagen deposition and the expression levels of AIF‑1, phosphatidylinositol 3‑kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), the oxidative stress factor NADPH oxidase 2 (NOX2) and nuclear transcription factor erythroid‑related factor 2 (Nrf2) were assessed in normal rats, rats treated with aldosterone, rats treated with aldosterone and spironolactone and those treated with spironolactone only (used as the control). The effect of aldosterone on these factors was also investigated in the renal interstitium of unilateral ureteral obstruction (UUO) rats. Additionally, the AIF‑1 gene was overexpressed and knocked down in macrophage RAW264.7 cells, and the effects of aldosterone on PI3K, AKT, mTOR, NOX2 and Nrf2 were subsequently investigated. The results showed that aldosterone promoted inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, PI3K, AKT, mTOR and NOX2, but inhibited the expression of Nrf2. In the UUO rats, aldosterone also promoted renal interstitial inflammatory cell infiltration, collagen deposition and the expression of AIF‑1, NOX2, PI3K, AKT and mTOR, whereas the expression of Nrf2 was downregulated by aldosterone compared with that in the UUO‑only group; the influence of aldosterone was counteracted by spironolactone in the normal and UUO rats. In vitro, aldosterone upregulated the expression levels of AKT, mTOR, NOX2 and Nrf2 in RAW264.7 cells compared with those in untreated cells. Suppressing the expression of AIF‑1 inhibited the effects of aldosterone, whereas the overexpression of AIF‑1 enhanced these effects in RAW264.7 cells. These findings indicated that aldosterone promoted renal interstitial fibrosis by upregulating the expression of AIF‑1 and that the specific mechanism may involve AKT/mTOR and oxidative stress signaling.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yushu Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Li
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuyu Zhang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
10
|
Amano MT, Castoldi A, Andrade-Oliveira V, Latancia MT, Terra FF, Correa-Costa M, Breda CNS, Felizardo RJF, Pereira WO, da Silva MB, Miyagi MYS, Aguiar CF, Hiyane MI, Silva JS, Moura IC, Camara NOS. The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression. Int Immunopharmacol 2018; 64:151-161. [PMID: 30176533 DOI: 10.1016/j.intimp.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are major concerns in worldwide public health, and their pathophysiology involves immune cells activation, being macrophages one of the main players of both processes. It is suggested that metabolic pathways could contribute to macrophage modulation and phosphatidylinositol‑3 kinase (PI3K) pathway was shown to be activated in kidneys subjected to ischemia and reperfusion as well as unilateral ureteral obstruction (UUO). Although PI3K inhibition is mostly associated with anti-inflammatory response, its use in kidney injuries has been shown controversial results, which indicates the need for further studies. Our aim was to unveil the role of PI3Kγ in macrophage polarization and in kidney diseases development. We analyzed bone-marrow macrophages polarization from wild-type (WT) and PI3Kγ knockout (PI3K KO) animals. We observed increased expression of M1 (CD86, CCR7, iNOS, TNF, CXCL9, CXCL10, IL-12 and IL-23) and decreased of M2 (CD206, Arg-1, FIZZ1 and YM1) markers in the lack of PI3Kγ. And this modulation was accompanied by higher levels of inflammatory cytokines in PI3K KO M1 cells. PI3K KO mice had increased M1 in steady state kidneys, and no protection was observed in these mice after acute and chronic kidney insults. On the contrary, they presented higher levels of protein-to-creatinine ratio and Kim-1 expression and increased tubular injury. In conclusion, our findings demonstrated that the lack of PI3Kγ favors M1 macrophages polarization providing an inflammatory-prone environment, which does not prevent kidney diseases progression.
Collapse
Affiliation(s)
- Mariane T Amano
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, Sao Paulo, Brazil.
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcela T Latancia
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Fernanda F Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus Correa-Costa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristiane N S Breda
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael J F Felizardo
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Welbert O Pereira
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, Sao Paulo, Brazil
| | - Marina B da Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Y S Miyagi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristhiane F Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Meire I Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Medical School Ribeirão Preto, FMRP, University of Sao Paulo, Sao Paulo, Brazil
| | - Ivan C Moura
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France; Paris Descartes - Sorbonne Paris Cité University, Paris, France; CNRS ERL 8254, Imagine Institute, Laboratory of Excellence GR-Ex, Paris, France
| | - Niels O S Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Renal Pathology, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Xu Y, Ling Y, Yang F, Deng J, Rong L, Jiang M, Jiang X. The mTOR/p70S6K1 signaling pathway in renal fibrosis of children with immunoglobulin A nephropathy. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317717831. [PMID: 28685619 PMCID: PMC5843880 DOI: 10.1177/1470320317717831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: The purpose of this study was to explore whether mTOR/p70S6K1 signaling is activated in renal fibrosis of immunoglobulin A nephropathy. Methods: Seventy-two children with immunoglobulin A nephropathy were divided into three groups according to their clinical features and pathological grades. Six normal renal specimens were included in the control group. The expression levels of angiotensin II, mTOR, p70S6K1, E-cadherin, and α-smooth muscle actin in renal tissues were determined by immunohistochemistry method, the potential correlations of these indexes and relationship between these indexes and the clinicopathological indexes were analyzed. Results: Compared to the control group, the expression levels of angiotensin II, mTOR, p70S6K1, and α-smooth muscle actin were significantly higher and the expression levels of E-cadherin were lower both in glomeruli and tubulointerstitium of immunoglobulin A nephropathy children. And the most significant differences were found in the nephrotic syndrome group and pathological grade IV group. In immunoglobulin A nephropathy renal tissues, the expression levels of angiotensin II in glomeruli and tubulointerstitium were both positively correlated with the expression levels of mTOR and α- smooth muscle actin, and negatively correlated with the expression levels of E-cadherin. Conclusion: The mTOR/p70S6K1 signaling was activated in renal tissues of children with immunoglobulin A nephropathy, and future studies will need to address the mechanism of mTOR/p70S6K1 signaling in the progress of renal fibrosis in immunoglobulin A nephropathy.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, P.R. China
| | - Fan Yang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Jiong Deng
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Liping Rong
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Mengjie Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, P.R. China
- Xiaoyun Jiang, Department of Pediatrics, the First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2,Yuexiu District, Guangzhou, P.R. China.
| |
Collapse
|
12
|
de Almeida DC, Bassi ÊJ, Azevedo H, Anderson L, Origassa CST, Cenedeze MA, de Andrade-Oliveira V, Felizardo RJF, da Silva RC, Hiyane MI, Semedo P, Dos Reis MA, Moreira-Filho CA, Verjovski-Almeida S, Pacheco-Silva Á, Câmara NOS. A Regulatory miRNA-mRNA Network Is Associated with Tissue Repair Induced by Mesenchymal Stromal Cells in Acute Kidney Injury. Front Immunol 2017; 7:645. [PMID: 28096802 PMCID: PMC5206861 DOI: 10.3389/fimmu.2016.00645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) orchestrate tissue repair by releasing cell-derived microvesicles (MVs), which, presumably by small RNA species, modulate global gene expression. The knowledge of miRNA/mRNA signatures linked to a reparative status may elucidate some of the molecular events associated with MSC protection. Here, we used a model of cisplatin-induced kidney injury (acute kidney injury) to assess how MSCs or MVs could restore tissue function. MSCs and MVs presented similar protective effects, which were evidenced in vivo and in vitro by modulating apoptosis, inflammation, oxidative stress, and a set of prosurvival molecules. In addition, we observed that miRNAs (i.e., miR-880, miR-141, miR-377, and miR-21) were modulated, thereby showing active participation on regenerative process. Subsequently, we identified that MSC regulates a particular miRNA subset which mRNA targets are associated with Wnt/TGF-β, fibrosis, and epithelial–mesenchymal transition signaling pathways. Our results suggest that MSCs release MVs that transcriptionally reprogram injured cells, thereby modulating a specific miRNA–mRNA network.
Collapse
Affiliation(s)
- Danilo Candido de Almeida
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ênio Jose Bassi
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Hatylas Azevedo
- Departamento de Pediatria, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| | - Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, Brazil
| | | | - Marcos Antônio Cenedeze
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | | | | | - Reinaldo Correia da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Patricia Semedo
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | | | | | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, Brazil
| | - Álvaro Pacheco-Silva
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Nicotine-Induced Apoptosis in Human Renal Proximal Tubular Epithelial Cells. PLoS One 2016; 11:e0152591. [PMID: 27028622 PMCID: PMC4814027 DOI: 10.1371/journal.pone.0152591] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
Background Nicotine is, to a large extent, responsible for smoking-mediated renal dysfunction. This study investigated nicotine’s effects on renal tubular epithelial cell apoptosis in vitro and it explored the mechanisms underlying its effects. Methods Human proximal tubular epithelial (HK-2) cells were treated with nicotine. Cell viability was examined by using the WST-1 assay. Intracellular levels of reactive oxygen species (ROS) and the expression of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) proteins were determined. The messenger ribonucleic acid and the protein expression associated with the nicotine acetylcholine receptors (nAChRs) in HK-2 cells was examined, and apoptosis was detected using flow cytometry, cell cycle analysis, and immunoblot analysis. Results The HK-2 cells were endowed with nAChRs. Nicotine treatment reduced cell viability dose dependently, increased ROS levels, and increased extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK expression. Nicotine increased NF-κB activation, which was attenuated by N-acetyl-L-cysteine, and ERK and JNK inhibitors, but was not affected by a p38 MAPK inhibitor. Nicotine increased the Bax/Bcl-2 ratio, which was attenuated by N-acetyl-L-cysteine, the NF-κB inhibitor, Bay 11–7082, and hexamethonium, a non-specific nAChR blocker. Flow cytometry revealed nicotine-induced G2/M phase arrest. While nicotine treatment increased the expression of phosphorylated cdc2 and histone H3, a marker of G2/M phase arrest, hexamethonium and Bay 11–7082 pretreatment reduced their expression. Conclusions Nicotine caused apoptosis in HK-2 cells by inducing ROS generation that activated the NF-κB signaling pathway via the MAPK pathway and it arrested the cell cycle at the G2/M phase. Nicotine-induced apoptosis in HK-2 cells involves the nAChRs.
Collapse
|