1
|
Xu L, Chen Y, Jin Q, Wu Y, Deng C, Zhong Y, Lin L, Chen L, Fu W, Yi L, Sun Z, Qin X, Li Y, Yang Y, Xie M. Biomimetic PLGA Microbubbles Coated with Platelet Membranes for Early Detection of Myocardial Ischaemia-Reperfusion Injury. Mol Pharm 2021; 18:2974-2985. [PMID: 34197128 DOI: 10.1021/acs.molpharmaceut.1c00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early diagnosis of myocardial ischaemia-reperfusion (MI/R) injury is important for protecting the myocardium and improving patient prognoses. Fortunately, the platelet membrane possesses the ability to target the region of MI/R injury. Therefore, we hypothesized that platelet membrane-coated particles (PMPs) could be used to detect early MI/R injury by ultrasound imaging. We designed PMPs with a porous polylactic-co-glycolic acid (PLGA) core coated with a platelet membrane shell. Red blood cell membrane-coated particles (RMPs) were fabricated as controls. Transmission electron microscopy (TEM) and fluorescence microscopy were applied to confirm the membrane coatings of the PMPs and RMPs. In vitro imaging of the PMPs and RMPs was verified. Moreover, binding experiments were designed to examine the targeting ability of the PMPs. Finally, we assessed the signal intensity of the adherent PMPs in the risk area and remote area by ultrasound imaging based on an MI/R rat model. The platelet membrane equipped the PMPs with an accurate targeting ability. Compared with RMPs, PMPs showed significantly more adhesion to human umbilical vein endothelial cells and collagen IV in vitro. Both PMPs and RMPs exhibited good enhancement ability in vitro and in vivo. Furthermore, the signal intensity of PMPs in the risk area was significantly higher than that in remote areas. These results were further validated by an immunofluorescence assay and ex vivo fluorescence imaging. In summary, ultrasound imaging with PMPs can detect early MI/R injury in a noninvasive manner.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ling Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ling Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zhenxing Sun
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaojuan Qin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
2
|
Zhao M, Zhu Y, Zhang Y, Yang X, Duan Y, Chen Y, Sun Y. CDCP1-targeted nanoparticles encapsulating phase-shift perfluorohexan for molecular US imaging in vitro. Clin Hemorheol Microcirc 2020; 80:25-35. [PMID: 33185589 DOI: 10.3233/ch-200900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Molecular targeted contrast-enhanced ultrasound (CEUS) imaging is a potential imaging strategy to improve the diagnostic accuracy of conventional ultrasound (US) imaging. US contrast agents are usually micrometer-sized and non-target gas bubbles while nano-sized and targeted agents containing phase-shift materials absorb more attractions for their size and the liquid core and excellent molecular imaging effect. METHODS PLGA12k-mPEG2k-NH2, DSPE-mPEG2k and perfluorohexan (PFH) were used to construct a new targeted ultrasound contrast agent with CUB domain-containing protein 1 (CDCP1) receptor for the detection and diagnosis of prostate cancer. The potential of tumor-targeted nanoparticles (CDCP1-targeted perfluorohexan-loaded phase-transitional nanoparticles, anti-CDCP1 NPs) as contrast agents for ultrasound (US) imaging was assessed in vitro. Moreover, studies on the cytotoxicity and the targeting ability of anti-CDCP1 NPs assisted by US were carried out. RESULTS The results showed that anti-CDCP1 NPs had low cytotoxicity, and with the increasing of polymer concentration in anti-CDCP1 NPs, the CEUS imaging of agent gradually enhanced, and enhanced imaging associated with the length of observing time. Furthermore, it was testified that anti-CDCP1 assisted the agent to target cells expressing CDCP1, which demonstrated the active targeting of anti-CDCP1 NPs in vitro. CONCLUSION All in all, the feasibility of using targeted anti-CDCP1 NPs to enhance ultrasound imaging has been demonstrated in vitro, which laid a solid foundation for molecular US imaging in vivo, and anti-CDCP1 NPs might have a great clinical application prospect.
Collapse
Affiliation(s)
- Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yunkai Zhu
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yaqing Chen
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes,Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6381464. [PMID: 27652265 PMCID: PMC5019893 DOI: 10.1155/2016/6381464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 12/04/2022]
Abstract
A folate-polyethylene glycol-chitosan derivative was synthesized and its structure was characterized. An optimal perfluorooctyl bromide nanocore template was obtained via utilizing the ultrasonic emulsification method combining with orthogonal design. The targeted nanoparticles containing targeted shell of folate-polyethylene glycol-chitosan derivative and perfluorooctyl bromide nanocore template of ultrasound imaging were prepared successfully by exploiting layer-by-layer self-assembly as contrast agent for ultrasound. Properties of the novel perfluorooctyl bromide nanoparticle were extensively studied by Dynamic Light Scattering and Transmission Electron Microscopy. The targeted nanoparticle diameter, polydispersity, and zeta potential are around 229.5 nm, 0.205, and 44.7 ± 0.6 mV, respectively. The study revealed that spherical core-shell morphology was preserved. Excellent stability of targeted nanoparticle is evidenced by two weeks of room temperature stability tests. The results of the cell viability assay and the hemolysis test confirmed that the targeted nanoparticle has an excellent biocompatibility for using in cell studies and ultrasound imaging in vivo. Most importantly, in vitro cell experiments demonstrated that an increased amount of targeted nanoparticles was accumulated in hepatocellular carcinoma cell line Bel7402 relative to hepatoma cell line L02. And targeted nanoparticles had also shown better ultrasound imaging abilities in vitro. The data suggest that the novel targeted nanoparticle may be applicable to ultrasonic molecular imaging of folate-receptor overexpressed tumor.
Collapse
|
4
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015; 6:112. [PMID: 25926844 PMCID: PMC4396535 DOI: 10.3389/fgene.2015.00112] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 01/18/2023] Open
Abstract
Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state.
Collapse
Affiliation(s)
- Julie C Kohn
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Marsha C Lampi
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|