1
|
Comarița IK, Tanko G, Anghelache IL, Georgescu A. The siRNA-mediated knockdown of AP-1 restores the function of the pulmonary artery and the right ventricle by reducing perivascular and interstitial fibrosis and key molecular players in cardiopulmonary disease. J Transl Med 2024; 22:137. [PMID: 38317144 PMCID: PMC10845748 DOI: 10.1186/s12967-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-β1/ET-1/IL-1β/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.
Collapse
Affiliation(s)
- Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | | | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
2
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Xu X, Li H, Wei Q, Li X, Shen Y, Guo G, Chen Y, He K, Liu C. Novel Targets in a High-Altitude Pulmonary Hypertension Rat Model Based on RNA-seq and Proteomics. Front Med (Lausanne) 2021; 8:742436. [PMID: 34805208 PMCID: PMC8595261 DOI: 10.3389/fmed.2021.742436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) is a complication arising from an inability to acclimatize to high altitude and is associated with high morbidity and mortality. We aimed to analyze the effects of macitentan, selexipag, riociguat, and reoxygenation on HAPH, and to screen possible targets of these treatments for future drug screening. Rats were subjected to hypobaric hypoxia for 35 days to induce HAPH, and treated with vehicle or selexipag, macitentan, riociguat, or with reoxygenation, from days 21 to 35. Selexipag, macitentan, and reoxygenation prevented an increase in mean pulmonary artery pressure and hypoxia-induced right ventricular hypertrophy, compared to the vehicle. Riociguat had little effect. RNA-seq and proteomics revealed strong correlations between responses to the three drugs, which had almost identical effects. GO-enrichment revealed that the differentially expressed genes included those involved in metabolic regulation, transcription, and translation. Various molecular pathways were annotated. Selexipag, macitentan, and reoxygenation ameliorated HAPH. Serpina1, Cryz, and Cmc1 were identified, via multi-omics screening, as key genes involved in HAPH. These findings provide new insights into the targeted drug mechanisms in HAPH.
Collapse
Affiliation(s)
- Xiang Xu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qingxia Wei
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Wang RX, He RL, Jiao HX, Zhang RT, Guo JY, Liu XR, Gui LX, Lin MJ, Wu ZJ. Preventive treatment with ginsenoside Rb1 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats and involves store-operated calcium entry inhibition. PHARMACEUTICAL BIOLOGY 2020; 58:1055-1063. [PMID: 33096951 PMCID: PMC7592893 DOI: 10.1080/13880209.2020.1831026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Ginsenoside Rb1, the main active ingredient of ginseng, exhibits ex vivo depression of store-operated calcium entry (SOCE) and related vasoconstriction in pulmonary arteries derived from pulmonary hypertension (PH) rats. However, the in vivo effects of ginsenoside Rb1 on PH remain unclear. OBJECTIVE This study explored the possibility of using ginsenoside Rb1 as an in vivo preventive medication for type I PH, i.e., pulmonary arterial hypertension (PAH), and potential mechanisms involving SOCE. MATERIALS AND METHODS Male Sprague-Dawley rats (170-180 g) were randomly divided into Control, MCT, and MCT + Rb1 groups (n = 20). Control rats received only saline injection. Rats in the MCT + Rb1 and MCT groups were intraperitoneally administered single doses of 50 mg/kg monocrotaline (MCT) combined with 30 mg/kg/day ginsenoside Rb1 or equivalent volumes of saline for 21 consecutive days. Subsequently, comprehensive parameters related to SOCE, vascular tone, histological changes and hemodynamics were measured. RESULTS Ginsenoside Rb1 reduced MCT-induced STIM1, TRPC1, and TRPC4 expression by 35.00, 31.96, and 32.24%, respectively, at the protein level. SOCE-related calcium entry and pulmonary artery contraction decreased by 162.6 nM and 71.72%. The mean pulmonary artery pressure, right ventricle systolic pressure, and right ventricular mass index decreased by 19.5 mmHg, 21.6 mmHg, and 39.50%. The wall thickness/radius ratios decreased by 14.67 and 17.65%, and the lumen area/total area ratios increased by 18.55 and 15.60% in intrapulmonary vessels with 51-100 and 101-150 μm o.d. CONCLUSION Ginsenoside Rb1, a promising candidate for PH prevention, inhibited SOCE and related pulmonary vasoconstriction, and relieved MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Rui-Xing Wang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Rui-Lan He
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hai-Xia Jiao
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Run-Tian Zhang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jing-Yi Guo
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiao-Ru Liu
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Biochemistry and Molecular biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Long-Xin Gui
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Mo-Jun Lin
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Mo-Jun Lin Department of Physiology and Pathophysiology, Fujian Medical University, 1 Xueyuan Road, Shangjie Zhen, Minhou County, Fuzhou350108, P.R. China
| | - Zhi-Juan Wu
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
- CONTACT Zhi-Juan Wu Department of Physiology and Pathophysiology, Fujian Medical University, 1 Xueyuan Road, Shangjie Zhen, Minhou County, Fuzhou350108, P.R. China
| |
Collapse
|
5
|
Chung H, Sohn IS. Moving Beyond the Endothelium is Still Challenging-Complex Interplay between Endothelin and Reactive Oxygen Species in Pulmonary Arterial Hypertension. Korean Circ J 2019; 49:877-878. [PMID: 31347318 PMCID: PMC6713820 DOI: 10.4070/kcj.2019.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hyemoon Chung
- Department of Cardiology, Kyung Hee University Medical Center, Seoul, Korea
| | - Il Suk Sohn
- Department of Cardiology, Kyung Hee University Hospital at Gangdong, Seoul, Korea.
| |
Collapse
|
6
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Jung HO. Benefits from the Early Initiation of Macitentan for Pulmonary Arterial Hypertension. Korean Circ J 2018; 48:854-856. [PMID: 30088355 PMCID: PMC6110702 DOI: 10.4070/kcj.2018.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/31/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hae Ok Jung
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea.
| |
Collapse
|