1
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Riccio A. New insights into oocyte cytoplasmic lattice-associated proteins. Trends Genet 2024; 40:880-890. [PMID: 38955588 DOI: 10.1016/j.tig.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania 'Luigi Vanvitelli,' Caserta, Italy; Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati-Traverso,' Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
2
|
Ducreux B, Ferreux L, Patrat C, Fauque P. Overview of Gene Expression Dynamics during Human Oogenesis/Folliculogenesis. Int J Mol Sci 2023; 25:33. [PMID: 38203203 PMCID: PMC10778858 DOI: 10.3390/ijms25010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The oocyte transcriptome follows a tightly controlled dynamic that leads the oocyte to grow and mature. This succession of distinct transcriptional states determines embryonic development prior to embryonic genome activation. However, these oocyte maternal mRNA regulatory events have yet to be decoded in humans. We reanalyzed human single-oocyte RNA-seq datasets previously published in the literature to decrypt the transcriptomic reshuffles ensuring that the oocyte is fully competent. We applied trajectory analysis (pseudotime) and a meta-analysis and uncovered the fundamental transcriptomic requirements of the oocyte at any moment of oogenesis until reaching the metaphase II stage (MII). We identified a bunch of genes showing significant variation in expression from primordial-to-antral follicle oocyte development and characterized their temporal regulation and their biological relevance. We also revealed the selective regulation of specific transcripts during the germinal vesicle-to-MII transition. Transcripts associated with energy production and mitochondrial functions were extensively downregulated, while those associated with cytoplasmic translation, histone modification, meiotic processes, and RNA processes were conserved. From the genes identified in this study, some appeared as sensitive to environmental factors such as maternal age, polycystic ovary syndrome, cryoconservation, and in vitro maturation. In the future, the atlas of transcriptomic changes described in this study will enable more precise identification of the transcripts responsible for follicular growth and oocyte maturation failures.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
| | - Lucile Ferreux
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Catherine Patrat
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
- Laboratoire de Biologie de la Reproduction-CECOS, CHU Dijon Bourgogne, 14 Rue Gaffarel, F-21000 Dijon, France
| |
Collapse
|
3
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
4
|
Kawamoto TS, Viana JHM, Pontelo TP, Franco MM, de Faria OAC, Fidelis AAG, Vargas LN, Figueiredo RA. Dynamics of the Reproductive Changes and Acquisition of Oocyte Competence in Nelore (Bos taurus indicus) Calves during the Early and Intermediate Prepubertal Periods. Animals (Basel) 2022; 12:ani12162137. [PMID: 36009727 PMCID: PMC9405107 DOI: 10.3390/ani12162137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to characterize the reproductive physiology, oocyte competence, and chromatin compaction in Nelore calves in the early-prepubertal period (EPP) and the intermediate-prepubertal period (IPP). Calves aged 2-5 (EPP) and 8-11 months old (IPP) were assigned to Trial 1 (morpho-physiological-endocrine evaluations, n = 8) or Trial 2 (oocyte donors, n = 8) vs. the respective control groups of cows (n = 8, each). All morphological endpoints, except the antral follicle count, increased from the EPP to the IPP. The EPP LH-FSH plasma concentrations were similar to cows, whereas LH was lower and FSH was higher in the IPP than in cows. . Cows produced more Grade I (12.9% vs. 4.1% and 1.7%) and fewer Grade III COC (30.1% vs. 44.5% and 49.0%) than the EPP and IPP calves, respectively. The IPP calves' oocyte diameter was similar to those from cows but greater than those from EPP females (124.8 ± 8.5 and 126.0 ± 7.5 μm vs. 121.3 ± 7.5 μm, respectively). The expression of the chromatin compaction-related gene HDAC3 was downregulated in calves. The proportion of the blastocyst rate to the controls was lower in EPP than in IPP calves (43.7% vs. 78.7%, respectively). Progressive oocyte competence was found during the prepubertal period, which can help to decide whether to recover oocytes from calves.
Collapse
Affiliation(s)
- Taynan Stonoga Kawamoto
- Department of Veterinary, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | | | | | - Maurício Machaim Franco
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
| | | | | | - Luna Nascimento Vargas
- Department of Biology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | - Ricardo Alamino Figueiredo
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
- Correspondence: ; Tel.: +55-61-3448-4961
| |
Collapse
|
5
|
Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira Leme L, Kussano NR, Zangeronimo MG, Dode MAN. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS One 2021; 16:e0247518. [PMID: 33667248 PMCID: PMC7935280 DOI: 10.1371/journal.pone.0247518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the effect of scriptaid during pre-maturation (PIVM) and/or maturation (IVM) on developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were submitted to PIVM for 6 h in the presence or absence of scriptaid. COCs were distributed into five groups: T1-IVM for 22 h, T2-PIVM for 6 h and IVM for 22 h, T3-PIVM with scriptaid for 6 h and IVM for 22 h, T4-PIVM for 6 h and IVM with scriptaid for 22 h, and T5-PIVM with scriptaid for 6 h and IVM with scriptaid for 22 h. Nuclear maturation, gene expression, cumulus cells (CCs) expansion, and embryo development and quality were evaluated. At the end of maturation, all groups presented the majority of oocytes in MII (P>0.05). Only HAT1 gene was differentially expressed (P<0.01) in oocytes with different treatments. Regarding embryo development at D7, T4 (23%) and T5 (18%) had lower blastocyst rate (P<0.05) than the other treatments (T1 = 35%, T2 = 37% and T3 = 32%). No effect was observed when scriptaid in PIVM was used in less competent oocytes (P>0.05). In conclusion, presence of scriptaid in PIVM and/or IVM did not improve developmental competence or embryo quality.
Collapse
Affiliation(s)
| | - Mauricio Machaim Franco
- Federal University Uberlândia, Animal Science, Uberlândia, Minas Gerais, Brazil
- Institute of Genetics and Biochemistry of Federal, University of Uberlandia, Uberlândia, Minas Gerais, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Margot Alves Nunes Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- University of Brasilia, Animal Science, Brasilia, Distrito Federal, Brazil
- University of Brasilia, Institute of Biology, Brasilia, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
6
|
Pontelo TP, Rodrigues SAD, Kawamoto TS, Leme LO, Gomes ACMM, Zangeronimo MG, Franco MM, Dode MAN. Histone acetylation during the in vitro maturation of bovine oocytes with different levels of competence. Reprod Fertil Dev 2021; 32:690-696. [PMID: 32317093 DOI: 10.1071/rd19218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/06/2019] [Indexed: 11/23/2022] Open
Abstract
We aimed to analyse the histone acetylation status and expression profile of genes involved in histone acetylation (histone acetyltransferase 1 (HAT1), lysine acetyltransferase 2A (KAT2A), histone deacetylase 1(HDAC1), HDAC2 and HDAC3) in bovine oocytes of different competences during invitro maturation (IVM). Cumulus-oocyte complexes were recovered from two groups of follicles: minor follicles (1.0-3.0mm in diameter), classified as low competence (LC) and large follicles (6.0-8.0mm in diameter) classified as high competence (HC). Oocytes were submitted to IVM for 0, 8 and 24h and stored for analysis. Acetylation status of histone H4 on lysine K5, K6, K12 and K16 was assessed by immunohistochemistry. For gene expression, mRNA levels were determined by real-time quantitative polymerase chain reaction. All oocytes, regardless of their competence, showed a gradual decrease (P<0.05) in acetylation signals during IVM. From 0 to 8h of maturation, an increase (P<0.05) in the relative abundance of HAT1 mRNA was observed only in the HC oocytes. In this group, higher (P<0.05) mRNA levels of HDAC1 at 8h of maturation were also observed. In conclusion, in the present study, LC oocytes were shown to have adequate acetylation levels for the resumption and progression of meiosis; however, these oocytes do not have the capacity to synthesise RNA during IVM as the HC oocytes do.
Collapse
Affiliation(s)
- Thais P Pontelo
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG 32700-000, Brazil
| | - Sarah A D Rodrigues
- Department of Animal Science, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Taynan S Kawamoto
- Department of Veterinary Medicine, Federal University Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Ligiane O Leme
- Department of Animal Science, Federal University of Espírito Santo, Vitória, ES 29075-073, Brazil
| | - A C M M Gomes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-900, Brazil
| | - Marcio G Zangeronimo
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG 32700-000, Brazil
| | - Mauricio M Franco
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-900, Brazil
| | - Margot A N Dode
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-900, Brazil; and Corresponding author.
| |
Collapse
|
7
|
Lodde V, Colleoni S, Tessaro I, Corbani D, Lazzari G, Luciano AM, Galli C, Franciosi F. A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle. Reprod Fertil Dev 2020; 31:1793-1804. [PMID: 31630726 DOI: 10.1071/rd19230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus-oocyte complexes (COCs) according to follicle size (<1, 1-2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1-2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1-2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann-Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.
Collapse
Affiliation(s)
- Valentina Lodde
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Silvia Colleoni
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Irene Tessaro
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Davide Corbani
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Giovanna Lazzari
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Alberto M Luciano
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Federica Franciosi
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy; and Corresponding author.
| |
Collapse
|
8
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
9
|
Razza EM, Sudano MJ, Fontes PK, Franchi FF, Belaz KRA, Santos PH, Castilho ACS, Rocha DFO, Eberlin MN, Machado MF, Nogueira MFG. Treatment with cyclic adenosine monophosphate modulators prior to in vitro maturation alters the lipid composition and transcript profile of bovine cumulus-oocyte complexes and blastocysts. Reprod Fertil Dev 2019; 30:1314-1328. [PMID: 29681258 DOI: 10.1071/rd17335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/15/2018] [Indexed: 02/05/2023] Open
Abstract
Mammalian oocytes resume meiosis spontaneously after removal from the ovarian follicle. We tested the effects of a 2-h prematuration treatment (Pre-IVM) with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) in bovine cumulus-oocyte complexes (COCs) on the lipid content of oocytes and blastocysts, on the membrane lipid composition of blastocysts and on the transcriptional profiling of cumulus cells and blastocysts in a high-throughput platform. Embryonic development rates to the morula (mean 56.1%) or blastocyst (mean 26.3%) stages were unaffected by treatment. Lipid content was not affected after Pre-IVM, but was increased after IVM in treated oocytes. Conversely, the lipid content was reduced in Pre-IVM blastocysts. Pre-IVM COCs generated blastocysts containing blastomeres with more unsaturated lipids in their membranes. Pre-IVM also altered the relative abundance of 31 gene transcripts after 2h and 16 transcripts after 24h in cumulus cells, while seven transcripts were altered in blastocysts. Our results suggest that the Pre-IVM treatment affected the lipid composition and transcriptional profiles of COCs and blastocysts. Therefore, Pre-IVM with FSK and IBMX could be used either to prevent spontaneous meiotic resumption during IVM or to modulate lipid composition in the membrane and cytoplasm of blastocysts, potentially improving bovine embryos.
Collapse
Affiliation(s)
- Eduardo M Razza
- Nove de Julho University, Rua Nicolau Assis, 15, 17011102, Bauru, São Paulo, Brazil
| | - Mateus J Sudano
- School of Veterinary Medicine, Federal University of Pampa, BR 472Km 592, Caixa Postal 118, 97508000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Patricia K Fontes
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Fernanda F Franchi
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Katia Roberta A Belaz
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Priscila H Santos
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Anthony C S Castilho
- University of Western São Paulo, Rodovia Raposo Tavares, km 572 -- Bairro Limoeiro, 19067175, Presidente Prudente, São Paulo, Brazil
| | - Daniele F O Rocha
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Mariana F Machado
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Triggering method in assisted reproduction alters the cumulus cell transcriptome. Reprod Biomed Online 2019; 39:211-224. [DOI: 10.1016/j.rbmo.2019.03.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022]
|
11
|
Herta AC, Lolicato F, Smitz JEJ. In vitro follicle culture in the context of IVF. Reproduction 2018; 156:F59-F73. [PMID: 29980584 DOI: 10.1530/rep-18-0173] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
The currently available assisted reproduction techniques for fertility preservation (i.e. in vitro maturation (IVM) and in vitro fertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistep in vitro systems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.
Collapse
Affiliation(s)
- Anamaria C Herta
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| | - Francesca Lolicato
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| | - Johan E J Smitz
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Sirard MA, Grand FX, Labrecque R, Vigneault C, Blondin P. ASAS-SSR Triennial Reproduction Symposium: The use of natural cycle's follicular dynamic to improve oocyte quality in dairy cows and heifers. J Anim Sci 2018. [PMID: 29514310 DOI: 10.1093/jas/sky050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The selection of the best dairy heifers is mainly driven by the genetic value of their parents. The phenotype analysis of cows and of the daughters of bulls has been used to identify the best genetic value for decades before being replaced by genomic selection of individuals that are not yet parents. Because it is possible to predict the future value of an individual by its genetic makeup, it becomes feasible to do it as early as the blastocyst stage and to decide which should be transferred or not. Because we know the genotype of an animal at birth, or even before, it is becoming desirable to reproduce this animal as soon as possible to reduce generation interval and improve selection speed. Nature provides constraints that can be overcome: a single oocyte per cycle and age at puberty. Indeed, it is now possible to super-stimulate the ovary at any age and to start collecting oocytes at 6 mo by trans-vaginal ultrasonography. The challenge becomes the production of good eggs and embryos capable of implanting and developing into healthy calves. Our understanding of ovarian follicular physiology has been instrumental in designing stimulation protocols that may be adjusted to any physiological context including age, and even the individual animal, to obtain a good response. Therefore, the combination of procedures developed in cows to optimize oocyte quality, for example, FSH coasting, in association with in vitro fertilization and optimal culture conditions can now result in the production of several female embryos twice a month from animals 6 to12 mo of age. The transcriptomic and epigenetic analyses of embryos produced from the same females at different ages were compared and few differences were noted in particular in relation to embryo metabolism. These embryos are as good as the ones obtained from adult animals and can be produced with sexed sperm of bulls 12 mo of age. This combination of these technical optimizations with blastocyst genotyping allows the selection of a second generation within a year.
Collapse
Affiliation(s)
- Marc André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
13
|
Sánchez F, Lolicato F, Romero S, De Vos M, Van Ranst H, Verheyen G, Anckaert E, Smitz JEJ. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod 2018; 32:2056-2068. [PMID: 28938744 DOI: 10.1093/humrep/dex262] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are meiotic and developmental competence of human oocytes from small (2-8 mm) antral follicles improved by applying an optimized IVM method involving a prematuration step in presence of C-Type Natriuretic Peptide (CNP) followed by a maturation step in presence of FSH and Amphiregulin (AREG)? SUMMARY ANSWER A strategy involving prematuration culture (PMC) in the presence of CNP followed by IVM using FSH + AREG increases oocyte maturation potential leading to a higher availability of Day 3 embryos and good-quality blastocysts for single embryo transfer. WHAT IS KNOWN ALREADY IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for the patients, but the approach is not widely used because of an efficiency gap compared to conventional ART. In vitro systems that enhance synchronization of nuclear and cytoplasmic maturation before the meiotic trigger are crucial to optimize human IVM systems. However, previous PMC attempts have failed in sustaining cumulus-oocyte connections throughout the culture period, which prohibited a normal cumulus-oocyte communication and precluded an adequate response by the cumulus-oocyte complex (COC) to the meiotic trigger. STUDY DESIGN, SIZE, DURATION A first prospective study involved sibling oocytes from a group of 15 patients with polycystic ovary syndrome (PCOS) to evaluate effects of a new IVM culture method on oocyte nuclear maturation and their downstream developmental competence. A second prospective study in an additional series of 15 women with polycystic ovaries characterized and fine-tuned the culture conditions. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifteen women with PCOS (according to Rotterdam criteria) underwent IVM treatment after 3-5 days of highly purified human menopausal gonadotropin (HP-hMG) stimulation and no human chorionic gonadotropin (hCG) trigger before oocyte retrieval. A first study was designed with sibling oocytes to prospectively evaluate the impact of an IVM culture method: 24 h PMC with CNP + 30 h IVM with FSH and AREG, on embryo yield, in comparison to the standard (30 h) IVM clinical protocol (Group I, n = 15). A second prospective study was performed in 15 women with polycystic ovaries, to characterize and optimize the PMC conditions (Group II, n = 15). The latter study involved the evaluation of oocyte meiotic arrest, the preservation of cumulus-oocyte transzonal projections (TZPs), the patterns of oocyte chromatin configuration and cumulus cells apoptosis following the 24 and 46 h PMC. Furthermore, oocyte developmental potential following PMC (24 and 46 h) + IVM was also evaluated. The first 20 good-quality blastocysts from PMC followed by IVM were analysed by next generation sequencing to evaluate their aneuploidy rate. MAIN RESULTS AND THE ROLE OF CHANCE PMC in presence of CNP followed by IVM using FSH and AREG increased the meiotic maturation rate per COC to 70%, which is significantly higher than routine standard IVM (49%; P ≤ 0.001). Hence, with the new system the proportion of COCs yielding transferable Day 3 embryos and good-quality blastocysts increased compared to routine standard IVM (from 23 to 43%; P ≤ 0.001 and from 8 to 18%; P ≤ 0.01, respectively). CNP was able to prevent meiosis resumption for up to 46 h. After PMC, COCs had preserved cumulus-oocyte TZPs. The blastocysts obtained after PMC + IVM did not show increased aneuploidy rates as compared to blastocysts from conventional ART. LIMITATIONS REASONS FOR CAUTION The novel IVM approach in PCOS patients was tested in oocytes derived from small antral follicles which have an intrinsically low developmental potential. Validation of the system would be required for COCs from different (larger) follicular sizes, which may involve further adjustment of PMC conditions. Furthermore, considering that this is a novel strategy in human IVM treatment, its global efficiency needs to be confirmed in large prospective randomized controlled trials. The further application in infertile patients without PCOS, e.g. cancer patients, remains to be evaluated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this pilot study suggest that the efficiency gap between IVM and conventional IVF can be reduced by fine-tuning of the culture methods. This novel strategy opens new perspectives for safe and patient-friendly ART in patients with PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from: the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680); the Fund for Research Flanders (Fonds Wetenschappelijk Onderzoek-Vlaanderen-FWO, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium.,Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva-BIOMER, Lima, Peru
| | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium.,Centre for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - G Verheyen
- Centre for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - J E J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| |
Collapse
|
14
|
The effect of follicle size and homogeneity of follicular development on the morphokinetics of human embryos. J Assist Reprod Genet 2017; 34:895-903. [PMID: 28470453 PMCID: PMC5476546 DOI: 10.1007/s10815-017-0935-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Purpose Our aim was to investigate follicular size (large, ≥17 mm and small, <17 mm) at the time of OPU and homogeneity of follicular development (homogenous development: follicles being present in a homogenous spread of all sizes; heterogeneous: a predominance of small and large follicles) by analysing the morphokinetics of embryo development. Methods In this prospective cohort study, 2526 COCs belonging to 187 patients were cultured to day 5. Embryos were evaluated morphokinetically. Four subgroups were defined: large follicles from heterogeneous cycles (LHet) and homogenous cycles (LHom) and small follicles from heterogeneous cycles (SHet) and homogenous cycles (SHom). Results Rates of fertilization, blastocyst formation and top and good quality blastocysts were found to be significantly higher in embryos from the LHom group (p < 0.001; p < 0.001; p < 0.001). Small follicles from both homogenous and heterogeneous cycles had significantly lower blastocyst formation and top and good quality blastocyst rates (p < 0.001; p < 0.001). Embryos from SHet had significantly more direct cleavages (p = 0.011). Time to reach blastocyst was shorter in SHom than LHet and LHom (p = 0.002; p = 0.027, respectively). However, once the blastocyst stage was achieved, implantation rates were not significantly different between subgroups, the highest rate being observed in the LHom group. Multivariable analysis revealed that homogeneity of follicular development and follicular size had a significant effect on blastocyst development and quality (p = 0.049; p < 0.001, respectively). Conclusion Follicular dynamics, illustrated by follicular size and homogeneity of follicular development, influence early human embryo development. Patterns of follicular growth have an impact on embryo quality and viability which is reflected in morphokinetic variables. Electronic supplementary material The online version of this article (doi:10.1007/s10815-017-0935-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Shishova KV, Lavrentyeva EA, Khamidullina AI, Zatsepina OV. Position of the nucleus in mouse germinal vesicle–stage oocytes with different chromatin configurations. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Labrecque R, Lodde V, Dieci C, Tessaro I, Luciano AM, Sirard MA. Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes. Mol Reprod Dev 2015; 82:450-62. [PMID: 25940597 DOI: 10.1002/mrd.22494] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 01/24/2023]
Abstract
Major remodelling of the chromatin enclosed within the germinal vesicle occurs towards the end of oocyte growth in mammals, but the mechanisms involved in this process are not completely understood. In bovine, four distinct stages of chromatin compaction-ranging from a diffused state (GV0) to a fully compacted configuration (GV3)-are linked to the gradual acquisition of developmental potential. To better understand the molecular events and to identify mRNA modulations occurring in the oocyte during the GV0-to-GV3 transition, transcriptomic analysis was performed with the EmbryoGENE microarray platform. The mRNA abundance of several genes decreased as chromatin compaction increased, which correlates with progressive transcriptional silencing that is characteristic of the end of oocyte growth. On the other hand, the abundance of some transcripts increased during the same period, particularly several histone gene transcripts from the H2A, H2B, H3, H4, and linker H1 family. In silico analysis predicted RNA-protein interactions between specific histone transcripts and the bovine stem-loop binding protein 2 (SLBP2), which helps regulate the translation of histone mRNA during oogenesis. These results suggest that some histone-encoding transcripts are actively stored, possibly to sustain the needs of the embryo before genome activation. This dataset offers a unique opportunity to survey which histone mRNAs are needed to complete chromatin compaction during oocyte maturation and which are stockpiled for the first three cell cycles following fertilization.
Collapse
Affiliation(s)
- R Labrecque
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada
| | - V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - C Dieci
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - I Tessaro
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Sciences and Food Safety, University of Milan, Milan, Italy
| | - M A Sirard
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada
- Department of Animal Sciences, Laval University, Québec, Québec, Canada
| |
Collapse
|
17
|
Sanchez F, Romero S, De Vos M, Verheyen G, Smitz J. Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with in vitro maturation capacity. Hum Reprod 2015; 30:1396-409. [DOI: 10.1093/humrep/dev083] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
|
18
|
Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, Novara PV, Fadini R. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update 2015; 21:427-54. [PMID: 25744083 DOI: 10.1093/humupd/dmv011] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In a growth phase occurring during most of folliculogenesis, the oocyte produces and accumulates molecules and organelles that are fundamental for the development of the preimplantation embryo. At ovulation, growth is followed by a phase of maturation that, although confined within a short temporal window, encompasses modifications of the oocyte chromosome complement and rearrangements of cytoplasmic components that are crucial for the achievement of developmental competence. Cumulus cells (CCs) are central to the process of maturation, providing the oocyte with metabolic support and regulatory cues. METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning oocyte maturation in mammals. Searches were performed adopting 'oocyte' and 'maturation' as main terms, in association with other keywords expressing concepts relevant to the subject. The most relevant publications, i.e. those concerning major phenomena occurring during oocyte maturation in established experimental models and the human species, were assessed and discussed critically to offer a comprehensive description of the process of oocyte maturation. RESULTS By applying the above described search criteria, 6165 publications were identified, of which 543 were review articles. The number of publications increased steadily from 1974 (n = 7) to 2013 (n = 293). In 2014, from January to the time of submission of this manuscript, 140 original manuscripts and reviews were published. The studies selected for this review extend previous knowledge and shed new and astounding knowledge on oocyte maturation. It has long been known that resumption of meiosis and progression to the metaphase II stage is intrinsic to oocyte maturation, but novel findings have revealed that specific chromatin configurations are indicative of a propensity of the oocyte to resume the meiotic process and acquire developmental competence. Recently, genetic integrity has also been characterized as a factor with important implications for oocyte maturation and quality. Changes occurring in the cytoplasmic compartment are equally fundamental. Microtubules, actin filaments and chromatin not only interact to finalize chromosome segregation, but also crucially co-operate to establish cell asymmetry. This allows polar body extrusion to be accomplished with minimal loss of cytoplasm. The cytoskeleton also orchestrates the rearrangement of organelles in preparation for fertilization. For example, during maturation the distribution of the endoplasmic reticulum undergoes major modifications guided by microtubules and microfilaments to make the oocyte more competent in the generation of intracellular Ca(2+) oscillations that are pivotal for triggering egg activation. Cumulus cells are inherent to the process of oocyte maturation, emitting regulatory signals via direct cell-to-cell contacts and paracrine factors. In addition to nurturing the oocyte with key metabolites, CCs regulate meiotic resumption and modulate the function of the oocyte cytoskeleton. CONCLUSIONS Although the importance of oocyte maturation for the achievement of female meiosis has long been recognized, until recently much less was known of the significance of this process in relation to other fundamental developmental events. Studies on chromatin dynamics and integrity have extended our understanding of female meiosis. Concomitantly, cytoskeletal and organelle changes and the ancillary role of CCs have been better appreciated. This is expected to inspire novel concepts and advances in assisted reproduction technologies, such as the development of novel in vitro maturation systems and the identification of biomarkers of oocyte quality.
Collapse
Affiliation(s)
- Giovanni Coticchio
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Maria Cristina Guglielmo
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Fausta Brambillasca
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Diana Turchi
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Paola Vittoria Novara
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Rubens Fadini
- Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| |
Collapse
|
19
|
Pellicciari C. Impact of Histochemistry on biomedical research: looking through the articles published in a long-established histochemical journal. Eur J Histochem 2014; 58:2474. [PMID: 25578981 PMCID: PMC4289853 DOI: 10.4081/ejh.2014.2474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Histochemistry provides the unique opportunity to detect single molecules in the very place where they exert their structural roles or functional activities: this makes it possible to correlate structural organization and function, and may be fruitfully exploited in countless biomedical research topics. Aiming to estimate the impact of histochemical articles in the biomedical field, the last few years citations of articles published in a long-established histochemical journal have been considered. This brief survey suggests that histochemical journals, especially the ones open to a large spectrum of research subjects, do represent an irreplaceable source of information not only for cell biologists, microscopists or anatomists, but also for biochemists, molecular biologists and biotechnologists.
Collapse
|
20
|
Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci 2014; 149:3-10. [PMID: 25028181 DOI: 10.1016/j.anireprosci.2014.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/18/2023]
Abstract
The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.
Collapse
Affiliation(s)
- Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Cecilia Dieci
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, ReDBiolab, Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
21
|
Pellicciari C. Histochemistry as an irreplaceable approach for investigating functional cytology and histology. Eur J Histochem 2013; 57:e41. [PMID: 24441194 PMCID: PMC3896043 DOI: 10.4081/ejh.2013.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
In agreement with the evolution of histochemistry over the last fifty years and thanks to the impressive advancements in microscopy sciences, the application of cytochemical techniques to light and electron microscopy is more and more addressed to elucidate the functional characteristics of cells and tissue under different physiological, pathological or experimental conditions. Simultaneously, the mere description of composition and morphological features has become increasingly sporadic in the histochemical literature. Since basic research on cell functional organization is essential for understanding the mechanisms responsible for major biological processes such as differentiation or growth control in normal and tumor tissues, histochemical Journals will continue to play a pivotal role in the field of cell and tissue biology in all its structural and functional aspects.
Collapse
|
22
|
Dieci C, Lodde V, Franciosi F, Lagutina I, Tessaro I, Modina SC, Albertini DF, Lazzari G, Galli C, Luciano AM. The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biol Reprod 2013; 89:68. [PMID: 23926281 DOI: 10.1095/biolreprod.113.110577] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the pig, the efficiency of in vitro embryo production and somatic cell nuclear transfer (SCNT) procedures remains limited. It has been suggested that prematuration treatments (pre-IVM) based on the prolongation of a patent, bidirectional crosstalk between the oocyte and the cumulus cells through gap junction mediate communication (GJC), with the maintenance of a proper level of cAMP, could improve the developmental capability of oocytes. The aim of this study was to assess: 1) dose-dependent effects of cilostamide on nuclear maturation kinetics, 2) the relationship between treatments on GJC functionality and large-scale chromatin configuration changes, and 3) the impact of treatments on developmental competence acquisition after parthenogenetic activation (PA) and SCNT. Accordingly, cumulus-oocyte complexes were collected from 3- to 6-mm antral follicles and cultured for 24 h in defined culture medium with or without 1 μM cilostamide. GJC functionality was assessed by Lucifer yellow microinjection, while chromatin configuration was evaluated by fluorescence microscopy after nuclear staining. Cilostamide administration sustained functional coupling for up to 24 h of culture and delayed meiotic resumption, as only 25.6% of cilostamide-treated oocytes reached the pro-metaphase I stage compared to the control (69.7%; P < 0.05). Moreover, progressive chromatin condensation was delayed before meiotic resumption based upon G2/M biomarker phosphoprotein epitope acquisition using immunolocalization. Importantly, cilostamide treatment under these conditions improved oocyte developmental competence, as reflected in higher blastocyst quality after both parthenogenetic activation and SCNT.
Collapse
Affiliation(s)
- Cecilia Dieci
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lodde V, Franciosi F, Tessaro I, Modina SC, Luciano AM. Role of gap junction-mediated communications in regulating large-scale chromatin configuration remodeling and embryonic developmental competence acquisition in fully grown bovine oocyte. J Assist Reprod Genet 2013; 30:1219-26. [PMID: 23881161 DOI: 10.1007/s10815-013-0061-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE This study was aimed to test the hypothesis that gap junction mediated communications (GJC) are required to allow the progressive chromatin configuration remodeling (from GV1 to GV3) process to occur in fully grown oocytes in order to gain the final step of developmental competence acquisition, and that a premature disruption of GJC can alter this process. METHODS Bovine cumulus-oocytes complexes collected from medium antral follicles were cultured for 2, 4, 6 and 8 h in the presence of 10(-4) IU/ml of r-hFSH and with 2 mM of the non-selective PDE inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) to prevent meiotic resumption. GJC functionality and chromatin configuration were monitored during the culture period. After meiotic arrest, the developmental capability of oocytes was assessed after IVM and IVF. RESULTS IBMX was effective in significantly sustaining GJC up to 6 h and maintaining meiotic arrest, when compared to control group. Moreover, the percentage of oocytes with less condensed chromatin (GV1) decreased within 4 h of culture, while the proportion of GV2 oocytes gradually increased up to 6 h. Interestingly, a decline in the proportion of GV2 oocytes and an increase in the proportion of GV3 oocytes were observed after 6 h of culture, when the major drop of GJC occurred. On the contrary, when GJC were uncoupled by adding 3 mM of 1-heptanol or through cumulus cells removal, chromatin condensation occurred rapidly throughout the culture period, more promptly in denuded oocytes. Moreover, the maintenance of GJC during meiotic arrest was accompanied by a significant increase of developmental competence compared to the control, as indicated by a higher percentage of hatched blastocysts and blastocyst cell number. CONCLUSIONS Altogether, our data indicate that both paracrine and junctional mechanisms are involved in modulating large-scale chromatin structure during the final phase of oocyte differentiation.
Collapse
Affiliation(s)
- Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
24
|
Pellicciari C. On the future contents of a small journal of histochemistry. Eur J Histochem 2012; 56:e51. [PMID: 23361247 PMCID: PMC3567770 DOI: 10.4081/ejh.2012.e51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023] Open
Abstract
In the last three years, more than 70,000 scientific articles have been published in peer reviewed journals on the application of histochemistry in the biomedical field: most of them did not appear in strictly histochemical journals, but in others dealing with cell and molecular biology, medicine or biotechnology. This proves that histochemistry is still an active and innovative discipline with relevance in basic and applied biological research, but also demonstrates that especially the small histochemical journals should likely reconsider their scopes and strategies to preserve their authorship. A review of the last three years volumes of the European Journal of Histochemistry, taken as an example of a long-time established small journal, confirmed that the published articles were widely heterogeneous in their topics and experimental models, as in this journal's tradition. This strongly suggests that a journal of histochemistry should keep its role as a forum open to an audience as broad as possible, publishing papers on cell and tissue biology in a wide variety of models. This will improve knowledge of the basic mechanisms of development and differentiation, while helping to increase the number of potential authors since scientists who generally do not use histochemistry in their research will find hints for the applications of histochemical techniques to novel still unexplored subjects.
Collapse
Affiliation(s)
- C Pellicciari
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”,University of Pavia, Italy.
| |
Collapse
|