1
|
Cui H, Liang X, Zhu Y, Elayah SA, Qi H, Xie L, Guo Z, Siya F, Ming Y, Yuxin G, Tu J, Na S. Mena as a key enhancer factor of EMT to promote metastasis of human tongue squamous cell carcinoma. Oral Dis 2024; 30:2084-2096. [PMID: 37203597 DOI: 10.1111/odi.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of mammalian-enabled (Mena) on tongue squamous cell carcinoma (TSCC) metastasis and its mechanism. MATERIALS AND METHODS Immunochemistry was performed to investigate the Mena and tumor-related markers expression, and its clinicopathological characteristics in 46 TSCC specimens. TSCC cell SCC9 and Cal27 untransfected or stable transfected with Mena overexpression and small interfering RNA were used to determine the role of Mena in cell proliferation, cell migration, invasion and metastasis, and EMT-related markers in vitro, and the effect of Mena on TSCC growth and metastasis through tumor-bearing and tumor metastasis immunodeficient mice models in vivo. RESULTS Immunochemistry showed that the expression of Mena was significantly correlated with lymphatic metastasis and TNM stage, E-cadherin, Vimentin, and MMP2. Mena did not affect cell proliferation and colony formation in vitro, and tumor growth in vivo. However, it promoted cell migration and invasion in vitro, and TSCC metastasis in vivo. CONCLUSIONS Mena expression is associated with lymphatic metastasis and tumor stage and promotes TSCC invasion and metastasis by inducing the EMT process. Thus, Mena may be a biomarker for prognosis and targeted therapy in TSCC patients.
Collapse
Affiliation(s)
- Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiang Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sadam Ahmed Elayah
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Qi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Pathology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhichen Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Siya
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Ming
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gong Yuxin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Bereczki-Temistocle D, Jung I, Gurzu S, Kovacs Z, Chiciudean R, Ormenisan A, Banias L. HPV disrupt the cytoskeleton in oral squamous cell carcinomas from non-oropharyngeal sites via the E-cadherin/Mena/SMA pathway. Pathol Res Pract 2023; 249:154723. [PMID: 37544131 DOI: 10.1016/j.prp.2023.154723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
In this paper, we aimed to evaluate the mechanism of actin cytoskeleton disruption, in oral squamous cell carcinoma (OSCC). A total of 43 patients with surgically resected OSCCs located in non-oropharyngeal regions were randomly selected. The expression of E-cadherin, β-catenin, smooth muscle actin (SMA), Mena, maspin, V-set and immunoglobulin domain containing 1 (VSIG1), β human chorionic gonadotropin (βhCG), and angiotensin-converting enzyme (ACE) was assessed via immunohistochemistry (IHC) and evaluated in association with the prevalence of high-risk human papillomavirus (HPV). Mena positivity (n = 30; 69.77%) was more frequent in poorly differentiated OSCC of the tongue and lips with high-risk HPV viral DNA and a lymph node ratio (LNR) ≤ 2.5. Loss of E-cadherin was more prevalent among poorly differentiated stage pT4N1 tumors with an LNR ≤ 2.5 and perineural invasion. These cases were classified as SMA-high tumors. Independent negative prognostic factors included high Mena expression, loss of E-cadherin, high SMA expression, and the presence of high-risk HPV. No VSIG1 positivity was observed. In conclusion, in non-oropharyngeal OSCC, cytoskeleton activity might be driven by the Mena/E-cadherin/SMA axis, reflecting active epithelial-mesenchymal interaction. High Mena intensity is an indicator of poorly differentiated carcinomas with high-risk HPV and unfavorable prognosis.
Collapse
Affiliation(s)
- Despina Bereczki-Temistocle
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania; Department of Oral and Maxillo-Facial Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania; Research Center of Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania.
| | - Zsolt Kovacs
- Research Center of Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania; Department of Biochemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | - Rebeca Chiciudean
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | - Alina Ormenisan
- Department of Oral and Maxillo-Facial Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | - Laura Banias
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| |
Collapse
|
3
|
Chen Z, Chu X, Xu J. Detection and analysis of long noncoding RNA expression profiles related to epithelial-mesenchymal transition in keloids. Biomed Eng Online 2022; 21:2. [PMID: 35012558 PMCID: PMC8751032 DOI: 10.1186/s12938-022-00976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The role of epithelial-mesenchymal transition (EMT) in the pathogenesis of keloids is currently raising increasing attention. Long noncoding RNAs (lncRNAs) govern a variety of biological processes, such as EMT, and their dysregulation is involved in many diseases including keloid disease. The aim of this study was to identify differentially expressed EMT-related lncRNAs in keloid tissues versus normal tissues and to interpret their functions. RESULTS Eleven lncRNAs and 16 mRNAs associated with EMT were identified to have differential expression between keloid and normal skin tissues (fold change > 1.5, P < 0.05). Gene Ontology (GO) analysis showed that these differentially expressed mRNAs functioned in the extracellular matrix, protein binding, the positive regulation of cellular processes, the Set1C/COMPASS complex and histone acetyltransferase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these mRNAs are involved in pathways in cancer. The lncRNA, XLOC_000587 may promote cell proliferation and migration by enhancing the expression of ENAH, while AF268386 may facilitate the invasive growth of keloids by upregulating DDR2. CONCLUSIONS We characterized the differential expression profiles of EMT-related lncRNAs and mRNAs in keloids, which may contribute to preventing the occurrence and development of keloids by targeting the corresponding signaling pathways. These lncRNAs and mRNAs may provide biomarkers for keloid diagnosis and serve as potential targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhixiong Chen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xi Chu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
4
|
Maksimov AY, Kostoev IS, Demidova AA, Prohodnaya VA, Akinfiev VM. [Differential bioinformational model for diagnostics of inflammatory and tumor diseases of the parotid salivary gland]. STOMATOLOGII︠A︡ 2021; 100:24-29. [PMID: 33528952 DOI: 10.17116/stomat202110001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
THE AIM Of the work was to develop a diagnostic algorithm for the differentiation of chronic inflammatory, benign and malignant processes in the parotid salivary gland (PSG) by the ratio of pro- and anti-inflammatory cytokines in the oral fluid. MATERIALS AND METHODS The epidemiological group of patients with cancer of the parotid salivary gland included 140 people from the oncological register of the Rostov region with the date of diagnosis, from 1969 to 2020. The clinical part of the work was performed on 70 patients of both sexes aged 50 to 80 years: 15 patients with chronic nonspecific parenchymal sialadenitis of the PSG (ICD K11.2) (group 1), 19 patients with pleomorphic adenoma of the PSG (ICD D11.0) (2 group), 20 patients with cancer of the PSG (ICD C07) (group 3) and 16 healthy individuals without pathology of the oral cavity (control group). The concentration of interleukin-6 (IL-6) and interleukin-10 (IL-10) was determined in the oral fluid by enzyme immunoassay. RESULTS It was found that in 58.5% of cases at the initial examination of patients with PSG cancer referred to a tertiary care hospital an erroneous opinion was formed about the inflammatory origin of the process. In inflammatory and tumor lesions of the PSG multidirectional differences are noted in the ratio between the concentrations of pro- and anti-inflammatory mediators in the oral fluid. In chronic sialadenitis of PSG in the oral fluid a moderate increase in the levels of IL-6 and IL-10 occurs, in the presence of adenoma of PSG, the concentration of IL-6 does not change while IL-10 increases threefold, and there is a sharp and unidirectional increase in the concentration of cytokines of the opposite groups in case of a malignant lesion of PSG. CONCLUSION Comparison of the concentration of IL-6 and IL-10 in saliva and their ratio defined by the developed discriminant models helps to make an individual diagnostic decision in a specific clinical situation.
Collapse
Affiliation(s)
- A Yu Maksimov
- National Medical Oncology Research Center of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - I S Kostoev
- National Medical Oncology Research Center of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - A A Demidova
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - V A Prohodnaya
- Rostov State Medical University of Ministry of Health of the Russian Federation, Rostov-on-Don, Russia
| | - V M Akinfiev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Allen A, Gau D, Francoeur P, Sturm J, Wang Y, Martin R, Maranchie J, Duensing A, Kaczorowski A, Duensing S, Wu L, Lotze MT, Koes D, Storkus WJ, Roy P. Actin-binding protein profilin1 promotes aggressiveness of clear-cell renal cell carcinoma cells. J Biol Chem 2020; 295:15636-15649. [PMID: 32883810 PMCID: PMC7667959 DOI: 10.1074/jbc.ra120.013963] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.
Collapse
Affiliation(s)
- Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Francoeur
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan Sturm
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Martin
- Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jodi Maranchie
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anette Duensing
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Kaczorowski
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Lily Wu
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael T. Lotze
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - David Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Walter J. Storkus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA,Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Kasradze D, Juodzbalys G, Guobis Z, Gervickas A, Cicciù M. Genetic and proteomic biomarkers of head-and-neck cancer: A systematic review. J Cancer Res Ther 2020; 16:410-424. [PMID: 32719245 DOI: 10.4103/jcrt.jcrt_145_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Development of human genetic and proteomic research has increased the interest in alternative head-and-neck cancer (HNC) detection methods. The aim of this article, the second of two-part series, was to review the scientific literature about novel HNC genetic and proteomic biomarkers. A comprehensive review of the current literature was conducted according to the Preferred Reporting Item for Systematic Review and Meta-analyses guidelines by accessing the NCBI PubMed database. Authors conducted the search of articles in English language published from 2004 to 2015. A total of 50 relevant studies were included in the review. Thirty of them concerned proteomic and twenty genetic alterations in HNC. The present systematic review discovered 242 genes and 44 proteins associated with HNC. Due to inconsistent and sparse results, novel biomarkers cannot be firmly established. Prognostic capacity of genetic markers was not evaluated. Proteins (14-3-3γ, extracellular matrix metalloproteinase inducer, and PA28γ) were described as most valuable for prognostic observation of HNC. A strict methodological protocol for molecular studies must be established.
Collapse
Affiliation(s)
- David Kasradze
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintaras Juodzbalys
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Zygimantas Guobis
- Department of Dental and Oral Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Albinas Gervickas
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Marco Cicciù
- Department of Biomedical and Dental Sciences, School of Dentistry, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Enah overexpression is correlated with poor survival and aggressive phenotype in gastric cancer. Cell Death Dis 2018; 9:998. [PMID: 30250066 PMCID: PMC6155292 DOI: 10.1038/s41419-018-1031-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Enabled homolog (Enah), which is a member of the Ena/VASP family that also includes VASP (vasodilator-stimulated phosphoprotein) and Ena/VASP like, is a mammalian ortholog of Drosophila Enabled (Ena). An increasing number of studies demonstrated Enah overexpression is involved in human colorectal carcinomas, breast cancers and hepatocellular carcinoma. However, the significance of Enah expression in gastric cancer (GC) is poorly elucidated. Here, we demonstrate that Enah is upregulated in GC and associated with AJCC stage, depth of invasion and poor overall survival (OS). Knockdown of Enah inhibited GC cell proliferation and metastasis and vice versa. Further experiments suggested that p-Erk1/2, p-AKT, p-p65, Vimentin and Fibronectin were downregulated and E-cadherin was upregulated after Enah silencing, implicating altered functions in GC proliferation and metastasis. Thus, our study suggests that Enah is a harmful factor for GC and a novel target for GC treatment.
Collapse
|
8
|
Sowa P, Goroszkiewicz K, Szydelko J, Chechlinska J, Pluta K, Domka W, Misiolek M, Scierski W. A Review of Selected Factors of Salivary Gland Tumour Formation and Malignant Transformation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2897827. [PMID: 30155477 PMCID: PMC6092996 DOI: 10.1155/2018/2897827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary gland tumours represent about 6% of head and neck neoplasms and about 0.5% of all malignancies in humans. Tumour growth and malignant transformation are complex processes involving various actions of molecules. Furthermore, some malignant salivary gland tumours are deemed to be caused by dedifferentiation or malignant transformation of benign tumours. The mechanisms of this transformation depend on a variety of different elements, such as cell cycle regulators, oncogenes, proteins, angiogenesis factors, and adipocytokines. The authors used PubMed, Medline, and Google websites to find and review the most significant papers related to malignant transformation in benign salivary gland tumours.
Collapse
Affiliation(s)
- Pawel Sowa
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Goroszkiewicz
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Szydelko
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Chechlinska
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Pluta
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Domka
- Department of Otorhinolaryngology, Faculty of Medicine, University of Rzeszow, Poland
| | - Maciej Misiolek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Don-López CA, Monroy-García A, Weiss-Steider B, Rocha-Zavaleta L, Hernández-Montes J, García-Rocha R, Mora-García MDL. GLMEEMSAL epitope common in different isoforms of hMena elicits in vitro activation of cytotoxic T cells and stimulates specific antitumor immunity in BALB/c mice. Int Immunopharmacol 2018; 56:291-300. [PMID: 29414664 DOI: 10.1016/j.intimp.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Alternative expression of human ortholog of murine Mena (hMena) hMena/hMena11a and hMena/hMenaΔv6 isoforms regulate the invasiveness and metastatic potential of tumor cells. It is then important to identify epitopes of these proteins that can elicit antitumor immune response to contribute to the elimination of cells with metastatic potential. METHODS We assayed the capacity of the peptide GLMEEMSAL, common in hMena/hMena11a and hMena/hMenaΔv6 isoforms, to generate an antitumor immune response through an in vitro vaccination system with mature dendritic cells (MDC) loaded with this peptide and in vivo immunization using a tumor model with the mammary adenocarcinoma JC cell line to induce tumors in BALBc mice. RESULTS MDC loaded with the peptide GLMEEMSAL elicited strong proliferation and activation of CD8+ T lymphocytes. The CTLs generated with this system were capable to lyse specifically BrCa and CeCa cell lines expressing either hMena/hMena11a or hMena/hMenaΔv6. Immunization with GLMEEMSAL provided protective and therapeutic antitumor activity as well as increased survival in BALB/c mice. CONCLUSION These results are highly relevant for the use of common peptides among the different isoforms of hMena to develop immunotherapy protocols to counteract the growth and metastatic potential of tumors with over-expression of hMena.
Collapse
Affiliation(s)
- Christian Azucena Don-López
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Postgraduate Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Alberto Monroy-García
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Benny Weiss-Steider
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Department of Molecular Biology and Biotechnology, Institute of Biomedicine, UNAM, Mexico City, Mexico
| | - Jorge Hernández-Montes
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Rosario García-Rocha
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | | |
Collapse
|
10
|
Wang DD, Jin Q, Wang LL, Han SF, Chen YB, Sun GD, Sun SF, Sun SW, Wang T, Liu FJ, Wang P, Shi B. The significance of ENAH in carcinogenesis and prognosis in gastric cancer. Oncotarget 2017; 8:72466-72479. [PMID: 29069803 PMCID: PMC5641146 DOI: 10.18632/oncotarget.19801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The ENAH gene, which encodes a member of the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, is involved in the assembly of actin filaments required for cell adhesion and motility. Recent studies show overexpressed ENAH in several cancer types, and ENAH correlates with tumor invasiveness. This study aimed to investigate the expression and function of ENAH in primary gastric adenocarcinoma, and its prognostic significance. We found significantly increased mRNA (P = 0.0283) and protein (P = 0.0301) expression of ENAH in gastric cancer tissues. ENAH expression markedly associated with tumor size (P < 0.001), T stage (P < 0.001), N stage (P = 0.001), TNM stage (P < 0.001) and prognosis (P < 0.001). Cox regression analyses revealed ENAH expression as an independent predictor of overall survival (P = 0.019). We also analyzed data of 155 gastric cancer cases from The Cancer Genome Atlas (TCGA) and found that ENAH expression significantly correlated with age (P = 0.003), T stage (P = 0.023) and prognosis (P = 0.05). Furthermore, the function of ENAH in cell proliferation, colony formation, cell migration and invasion of gastric cancer cells was analyzed in vitro. Knockdown of ENAH expression suppressed cell proliferation, colony formation, cell migration and invasion in MKN45 cells. Conversely, overexpression of ENAH promoted cell proliferation, cell migration and invasion in MGC803 cells. Our research suggests that ENAH might play promoting functions in carcinogenesis and progression of gastric cancer, and may serve as a valuable prognostic marker for primary gastric adenocarcinoma patients.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| | - Qun Jin
- The General Hospital of Jinan Military Command, Jinan 250012, People's Republic of China
| | - Lei-Lei Wang
- Key Laboratory for Applied Microbiology of Shandong Province, Ecology Institute of Shandong Academy of Sciences, Jinan 250014, People's Republic of China
| | - Shu-Fang Han
- The General Hospital of Jinan Military Command, Jinan 250012, People's Republic of China
| | - Yi-Bing Chen
- Center of Genetic & Prenatal Diagnosis, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Guo-Dong Sun
- Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong Academy of Medical Sciences, Jinan 250031, People's Republic of China
| | - Shi-Fei Sun
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| | - Shu-Wang Sun
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| | - Tao Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| | - Fan-Jie Liu
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| | - Ping Wang
- School of Precision Instrument and Opto Electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Shandong Academy of Chinese Medicine, Jinan 250014, People's Republic of China
| | - Bin Shi
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Jinan 250062, People's Republic of China
| |
Collapse
|
11
|
Particular aspects in the cytogenetics and molecular biology of salivary gland tumours - current review of reports. Contemp Oncol (Pozn) 2016; 20:281-6. [PMID: 27688723 PMCID: PMC5032155 DOI: 10.5114/wo.2016.61847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2015] [Indexed: 12/26/2022] Open
Abstract
Salivary gland tumours are a group of lesions whose heterogeneity of biological and pathological features is widely reflected in the molecular aspect. This is demonstrated by an increasing number of studies in the field of genetics of these tumours. The aim of this study was to collect the most significant scientific reports on the cytogenetic and molecular data concerning these tumours, which might facilitate the identification of potential biomarkers and therapeutic targets. The analysis covered 71 papers included in the PubMed database. We focused on the most common tumours, such as pleomorphic adenoma, Warthin tumour, mucoepidermoid carcinoma, and others. The aim of this study is to present current knowledge about widely explored genotypic alterations (such as PLAG1 gene in pleomorphic adenoma or MECT1 gene in mucoepidermoid carcinoma), and also about rare markers, like Mena or SOX10 protein, which might also be associated with tumourigenesis and carcinogenesis of these tumours.
Collapse
|
12
|
Zhou HM, Fang YY, Weinberger PM, Ding LL, Cowell JK, Hudson FZ, Ren M, Lee JR, Chen QK, Su H, Dynan WS, Lin Y. Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer 2016; 16:55. [PMID: 26847345 PMCID: PMC4741053 DOI: 10.1186/s12885-016-2105-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/31/2016] [Indexed: 01/22/2023] Open
Abstract
Background Transgelin is an actin-binding protein that promotes motility in normal cells. Although the role of transgelin in cancer is controversial, a number of studies have shown that elevated levels correlate with aggressive tumor behavior, advanced stage, and poor prognosis. Here we sought to determine the role of transgelin more directly by determining whether experimental manipulation of transgelin levels in colorectal cancer (CRC) cells led to changes in metastatic potential in vivo. Methods Isogenic CRC cell lines that differ in transgelin expression were characterized using in vitro assays of growth and invasiveness and a mouse tail vein assay of experimental metastasis. Downstream effects of transgelin overexpression were investigated by gene expression profiling and quantitative PCR. Results Stable overexpression of transgelin in RKO cells, which have low endogenous levels, led to increased invasiveness, growth at low density, and growth in soft agar. Overexpression also led to an increase in the number and size of lung metastases in the mouse tail vein injection model. Similarly, attenuation of transgelin expression in HCT116 cells, which have high endogenous levels, decreased metastases in the same model. Investigation of mRNA expression patterns showed that transgelin overexpression altered the levels of approximately 250 other transcripts, with over-representation of genes that affect function of actin or other cytoskeletal proteins. Changes included increases in HOOK1, SDCCAG8, ENAH/Mena, and TNS1 and decreases in EMB, BCL11B, and PTPRD. Conclusions Increases or decreases in transgelin levels have reciprocal effects on tumor cell behavior, with higher expression promoting metastasis. Chronic overexpression influences steady-state levels of mRNAs for metastasis-related genes. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2105-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Min Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yuan-Yuan Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Paul M Weinberger
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA, 30912, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | | | - John K Cowell
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Mingqiang Ren
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jeffrey R Lee
- Department of Pathology, Georgia Regents University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Qi-Kui Chen
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hong Su
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - William S Dynan
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA. .,Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA, USA.
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Pellicciari C. Impact of Histochemistry on biomedical research: looking through the articles published in a long-established histochemical journal. Eur J Histochem 2014; 58:2474. [PMID: 25578981 PMCID: PMC4289853 DOI: 10.4081/ejh.2014.2474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022] Open
Abstract
Histochemistry provides the unique opportunity to detect single molecules in the very place where they exert their structural roles or functional activities: this makes it possible to correlate structural organization and function, and may be fruitfully exploited in countless biomedical research topics. Aiming to estimate the impact of histochemical articles in the biomedical field, the last few years citations of articles published in a long-established histochemical journal have been considered. This brief survey suggests that histochemical journals, especially the ones open to a large spectrum of research subjects, do represent an irreplaceable source of information not only for cell biologists, microscopists or anatomists, but also for biochemists, molecular biologists and biotechnologists.
Collapse
|
14
|
Expression of cytoskeleton regulatory protein Mena in human hepatocellular carcinoma and its prognostic significance. Med Oncol 2014; 31:939. [PMID: 24683008 DOI: 10.1007/s12032-014-0939-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms of the development and progression of hepatocellular carcinoma (HCC) are poorly understood. The main objective of this study was to analyze the expression of Enabled [mammalian Ena (Mena)] protein and its clinical significance in human HCC. The Mena expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction and Western blotting analysis in ten paired HCC tissues and the adjacent normal tissues. The expression of Mena protein in 81 specimens of HCC tissues was determined by immunohistochemistry. Associations of Mena expression with the clinicopathological features were analyzed, and prognosis of HCC patients was evaluated. The result shows the expression of Mena mRNA and protein was higher in HCC than in the adjacent normal tissues in ten paired samples. Mena was mainly accumulated in the cytoplasm of tumor cells and over-expressed in 40.74% (33/81) patients by immunohistochemical staining. Over-expression of Mena was significantly associated with poor cellular differentiation (P = 0.025), advanced tumor stage (P = 0.003) and worse disease-free survival (DFS, P < 0.001). In addition, Mena is an independent prognostic factor for DFS in multivariate analysis (HR 2.309, 95% CI 1.104-4.828; P = 0.026). Mena is up-regulated in HCC and associated with tumor differentiation and clinical stage. Mena may be an independent prognostic marker for DFS of HCC patients.
Collapse
|
15
|
|
16
|
Pellicciari C. Histochemistry as an irreplaceable approach for investigating functional cytology and histology. Eur J Histochem 2013; 57:e41. [PMID: 24441194 PMCID: PMC3896043 DOI: 10.4081/ejh.2013.e41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
In agreement with the evolution of histochemistry over the last fifty years and thanks to the impressive advancements in microscopy sciences, the application of cytochemical techniques to light and electron microscopy is more and more addressed to elucidate the functional characteristics of cells and tissue under different physiological, pathological or experimental conditions. Simultaneously, the mere description of composition and morphological features has become increasingly sporadic in the histochemical literature. Since basic research on cell functional organization is essential for understanding the mechanisms responsible for major biological processes such as differentiation or growth control in normal and tumor tissues, histochemical Journals will continue to play a pivotal role in the field of cell and tissue biology in all its structural and functional aspects.
Collapse
|
17
|
Cardinali G, Kovacs D, Mastrofrancesco A, Cota C, Donati P, Cordiali-Fei P, Francesconi F, Bonifati C. hMena: altered expression in psoriatic skin. Arch Dermatol Res 2013; 305:933-8. [PMID: 23604962 DOI: 10.1007/s00403-013-1358-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease, characterized by an enhanced proliferation and a deregulated differentiation of keratinocytes. hMena is an actin regulatory protein involved in the control of cell motility and adhesion. hMena results up-modulated in several human tumors with respect to normal tissues and its expression has been positively correlated to proliferation rate, tumor size and aggressiveness in response to mitogenic stimuli, such as epidermal growth factor. The hyperproliferation of keratinocytes observed in psoriasis prompted us to evaluate hMena expression on biopsies collected from involved and uninvolved skin of 12 patients with active plaque-type psoriasis with respect to healthy skin. We analyzed the expression of hMena at transcript and protein levels by quantitative RT-PCR and immunohistochemistry. We correlated the expression of hMena to Ki67 proliferation index and to keratin 10 (K10) and keratin 16 (K16) used as markers of keratinocyte differentiation and activation. We demonstrated the expression of hMena in a hyperproliferative skin condition not related to neoplastic transformation. Interestingly, we observed that hMena is not expressed in healthy skin, but it becomes detectable in non-lesional areas and it is even more expressed in lesional psoriatic skin. In addition, we found that hMena expression is correlated to the rate of keratinocyte proliferation and activation. Hence, our observations indicate hMena as a new possible player, involved in the development and/or maintenance of the hyperproliferative state of psoriatic keratinocytes.
Collapse
Affiliation(s)
- G Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute (IRCCS), Via Elio Chianesi 53, 00144, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gurzu S, Ciortea D, Ember I, Jung I. The possible role of Mena protein and its splicing-derived variants in embryogenesis, carcinogenesis, and tumor invasion: a systematic review of the literature. BIOMED RESEARCH INTERNATIONAL 2013; 2013:365192. [PMID: 23956979 PMCID: PMC3728509 DOI: 10.1155/2013/365192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/16/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
The Ena/VASP (enabled/vasodilator stimulated phosphoprotein) family includes the binding actin proteins such as mammalian Ena (Mena), VASP, and Ena-VASP-like. It is known that the perturbation of actin cycle could determine alteration in the mobility of cells and in consequence of organogenesis. Few recent studies have revealed that Mena protein could play a role in breast or pancreatic carcinogenesis. Based on our researches, we observed that the intensity of Mena expression increased from premalignant to malignant lesions in some organs such as large bowel, stomach, cervix, and salivary glands. These findings prove that Mena could be a marker of premalignant epithelial lesions. In premalignant lesions, it could be helpful to define more accurately the risk for malignant transformation. In malignant tumors, correlation of expression of its splice variants could indicate metastatic behavior. In conclusion, we consider that it is necessary to analyze the expression of Mena splice variants in a higher number of cases, in different epithelial lesions, and also in experimental studies to define its exact role in carcinogenesis and also its possible prognostic and predictive values.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, University of Medicine and Pharmacy of Targu-Mures, 38 Ghe Marinescu Street, 540193 Targu Mures, Romania.
| | | | | | | |
Collapse
|
19
|
Pellicciari C. On the future contents of a small journal of histochemistry. Eur J Histochem 2012; 56:e51. [PMID: 23361247 PMCID: PMC3567770 DOI: 10.4081/ejh.2012.e51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023] Open
Abstract
In the last three years, more than 70,000 scientific articles have been published in peer reviewed journals on the application of histochemistry in the biomedical field: most of them did not appear in strictly histochemical journals, but in others dealing with cell and molecular biology, medicine or biotechnology. This proves that histochemistry is still an active and innovative discipline with relevance in basic and applied biological research, but also demonstrates that especially the small histochemical journals should likely reconsider their scopes and strategies to preserve their authorship. A review of the last three years volumes of the European Journal of Histochemistry, taken as an example of a long-time established small journal, confirmed that the published articles were widely heterogeneous in their topics and experimental models, as in this journal's tradition. This strongly suggests that a journal of histochemistry should keep its role as a forum open to an audience as broad as possible, publishing papers on cell and tissue biology in a wide variety of models. This will improve knowledge of the basic mechanisms of development and differentiation, while helping to increase the number of potential authors since scientists who generally do not use histochemistry in their research will find hints for the applications of histochemical techniques to novel still unexplored subjects.
Collapse
Affiliation(s)
- C Pellicciari
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”,University of Pavia, Italy.
| |
Collapse
|