1
|
Camacho J, Bernal-Rivera A, Peña V, Morales-Sosa P, Robb SMC, Russell J, Yi K, Wang Y, Tsuchiya D, Murillo-García OE, Rohner N. Sugar assimilation underlying dietary evolution of Neotropical bats. Nat Ecol Evol 2024; 8:1735-1750. [PMID: 39198571 PMCID: PMC11383804 DOI: 10.1038/s41559-024-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/27/2024] [Indexed: 09/01/2024]
Abstract
Dietary specializations in animals lead to adaptations in morphology, anatomy and physiology. Neotropical bats, with their high taxonomic and trophic diversity, offer a unique perspective on diet-driven evolutionary adaptations. Here we assess the metabolic response to different dietary sugars among wild-caught bats. We found that insectivorous bats had a pronounced metabolic response to trehalose, whereas bats with nectar and fruit-based diets showed significantly higher blood glucose levels in response to glucose and sucrose, reaching levels over 750 mg dl-1. The genomic analysis of 22 focal species and two outgroup species identified positive selection for the digestive enzyme trehalase in insect eaters, while sucrase-isomaltase showed selection in lineages with omnivorous and nectar diets. By examining anatomical and cellular features of the small intestine, we discovered that dietary sugar proportion strongly impacted numerous digestive traits, providing valuable insight into the physiological implications of molecular adaptations. Using hybridization chain reaction (HCR) RNA fluorescence in situ hybridization, we observed unusually high expression in the glucose transporter gene Slc2a2 in nectar bats, while fruit bats increased levels of Slc5a1 and Slc2a5. Overall, this study highlights the intricate interplay between molecular, morphological and physiological aspects of diet evolution, offering new insights into the mechanisms of dietary diversification and sugar assimilation in mammals.
Collapse
Affiliation(s)
- Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Andrea Bernal-Rivera
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Valentina Peña
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Universidad del Valle, Cali, Colombia.
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Zhou H, Li J, Zhou D, Wu Y, Wang X, Zhou J, Ma Q, Yao X, Ma L. New insights into the germline genes and CDR3 repertoire of the TCRβ chain in Chiroptera. Front Immunol 2023; 14:1147859. [PMID: 37051236 PMCID: PMC10083501 DOI: 10.3389/fimmu.2023.1147859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionBats are recognized as natural reservoirs for many viruses, and their unique immune system enables them to coexist with these viruses without frequently exhibiting disease symptoms. However, the current understanding of the bat adaptive immune system is limited due to the lack of a database or tool capable of processing T-cell receptor (TCR) sequences for bats.MethodsWe performed germline gene annotation in three bat species using homologous genes and RSSs (Recombinational Signal Sequences) scanning method. Then we used the conserved C gene to construct the TCRβ chain receptor library of the Intermediate Horseshoe Bat. Bats' TCRβ data will be analyzed using MiXCR and constructed reference library.ResultsRegarding the annotation results, we found that the Pale Spear-nosed Bat has 37 members in the TRBV12 family, which is more than the total number of TRBV genes in the Greater Horseshoe Bat. The average number of unique TCRβ chain receptor sequences in each Intermediate Horseshoe Bat sample reached 24,904.DiscussionThe distinct variations in the distribution of TRBV genes among the three types of bats could have a direct impact on the diversity of the TCR repertoire, as evidenced by the presence of conserved amino acids that indicate the T-cell recognition of antigens in bats is MHC-restricted. The bats’ TCRβ repertoire is formed through the rearrangement of the V-D-J-C genes, with D-J/V-D deletions and insertions resulting in high diversity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xingliang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jiang Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qingqing Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Xinsheng Yao, ; Long Ma,
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Xinsheng Yao, ; Long Ma,
| |
Collapse
|
4
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
5
|
Geronimo E, Favetta PM, Palin GC, Trindade WA, Serenini GF, Martins LA, Otutumi LK, Germano RM. Morphological aspects of the digestive tract of insectivorous bats of the species
Molossus rufus
(E. Geoffroy, 1805). ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Edson Geronimo
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| | - Paula M. Favetta
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| | | | - Wesley A. Trindade
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| | - Grazielli F. Serenini
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| | - Lisiane A. Martins
- Professor of the Veterinary Medicine Course at the Santa Bárbara College of Higher Education FAESB São Paulo Brazil
| | - Luciana K. Otutumi
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| | - Ricardo M. Germano
- Postgraduate Program in Animal Science with an Emphasis on Bioactive Products UNIPAR Umuarama Brazil
| |
Collapse
|
6
|
Ding X, Jin F, Xu J, Zhang S, Chen D, Hu B, Hong Y. The impact of aquaculture system on the microbiome and gut metabolome of juvenile Chinese softshell turtle ( Pelodiscus sinensis). IMETA 2022; 1:e17. [PMID: 38868566 PMCID: PMC10989827 DOI: 10.1002/imt2.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2024]
Abstract
The commercial aquatic animal microbiome may markedly affect the successful host's farming in various aquaculture systems. However, very little was known about it. Here, two different aquaculture systems, the rice-fish culture (RFC) and intensive pond culture (IPC) systems, were compared to deconstruct the skin, oral, and gut microbiome, as well as the gut metabolome of juvenile Chinese softshell turtle (Pelodiscus sinensis). Higher alpha-diversity and functional redundancy of P. sinensis microbial community were found in the RFC than those of the IPC. The aquaculture systems have the strongest influence on the gut microbiome, followed by the skin microbiome, and finally the oral microbiome. Source-tracking analysis showed that the RFC's microbial community originated from more unknown sources than that of the IPC across all body regions. Strikingly, the RFC's oral and skin microbiome exhibited a significantly higher proportion of generalists and broader habitat niche breadth than those of the IPC, but not the gut. Null model analysis revealed that the RFC's oral and skin microbial community assembly was governed by a significantly greater proportion of deterministic processes than that of the IPC, but not the gut. We further identified the key gene and microbial contribution to five significantly changed gut metabolites, 2-oxoglutarate, N-acetyl-d-mannosamine, cis-4-hydroxy-d-proline, nicotinamide, and l-alanine, which were significantly correlated with important categories of microbe-mediated processes, including the amino acid metabolism, GABAergic synapse, ABC transporters, biosynthesis of unsaturated fatty acids, as well as citrate cycle. Moreover, different aquaculture systems have a significant impact on the hepatic lipid metabolism and body shape of P. sinensis. Our results provide new insight into the influence of aquaculture systems on the microbial community structure feature and assembly mechanism in an aquatic animal, also highlighting the key microbiome and gene contributions to the metabolite variation in the gut microbiome-metabolome association.
Collapse
Affiliation(s)
- Xia Ding
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Feng Jin
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Jiawang Xu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Shulei Zhang
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Dongxu Chen
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Beijuan Hu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Yijiang Hong
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
7
|
Haley PJ. From bats to pangolins: new insights into species differences in the structure and function of the immune system. Innate Immun 2022; 28:107-121. [PMID: 35506564 PMCID: PMC9136466 DOI: 10.1177/17534259221093120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Species differences in the structure and function of the immune system of laboratory animals are known to exist and have been reviewed extensively. However, the number and diversity of wild and exotic species, along with their associated viruses, that come into contact with humans has increased worldwide sometimes with lethal consequences. Far less is known about the immunobiology of these exotic and wild species. Data suggest that species differences of the mechanisms of inflammation, innate immunity and adaptive immunity are all involved in the establishment and maintenance of viral infections across reservoir hosts. The current review attempts to collect relevant data concerning the basics of innate and adaptive immune functions of exotic and wild species followed by identification of those differences that may play a role in the maintenance of viral infections in reservoir hosts.
Collapse
Affiliation(s)
- Patrick J. Haley
- Haley Tox/Path Consulting LLC, 104 Cypress Springs Way, 78633, Georgetown Texas, United States
| |
Collapse
|
8
|
Mohd-Yusof NS, Abdul-Latiff MAB, Mohd-Ridwan AR, Badrulisham AS, Othman N, Yaakop S, Md-Nor S, Md-Zain BM. First report on metabarcoding analysis of gut microbiome in Island Flying Fox ( Pteropushypomelanus) in island populations of Malaysia. Biodivers Data J 2022; 10:e69631. [PMID: 36761502 PMCID: PMC9848629 DOI: 10.3897/bdj.10.e69631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/09/2022] [Indexed: 01/12/2023] Open
Abstract
Flying fox (Pteropushypomelanus) belongs to the frugivorous bats, which play a crucial role in maintaining proper functioning of an ecosystem and conservation of the environment. Bats are well-known carriers of pathogenic viruses, such as BatCov RaTG13 from the coronavirus family that share 90.55% with SARS-CoV-2, the pathogen causing recent global pandemic coronavirus disease 19 (COVID-19). However, bats' possible role as a carrier of pathogenic bacteria is less explored. Here, using metabarcoding analysis through high-throughput sequencing, we explored the gut microbiome composition of different island populations on the east and west coasts of Peninsula Malaysia. The 16S rRNA gene in samples from Redang Island, Langkawi Island, Pangkor Island and Tinggi Island was amplified. Bacterial community composition and structure were analysed with α and β diversity metrics. A total of 25,658 operational taxonomic units at 97% similarity were assigned to eight phyla, 44 families, 61 genera and 94 species of microbes. The Proteobacteria was the dominant phylum in all populations. Meanwhile, the genera Enterobacter, Pseudomonas and Klebsiella, isolated in this study, were previously found in the rectum of other fruit bats. Our analyses suggest that Redang Island and Langkawi Island have high bacteria diversity. Thus, we found geographic locality is a strong predictor of microbial community composition and observed a positive correlation between ecological features and bacterial richness.
Collapse
Affiliation(s)
- Nur Syafika Mohd-Yusof
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600Muar, JohorMalaysia
| | - Abd Rahman Mohd-Ridwan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia,Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, MalaysiaCentre for Pre-University Studies, Universiti Malaysia Sarawak, 94300Kota Samarahan, SarawakMalaysia
| | - Aqilah Sakinah Badrulisham
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Nursyuhada Othman
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia (Pagoh Campus), KM1 Jalan Panchor 84600Muar, JohorMalaysia
| | - Salmah Yaakop
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Shukor Md-Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| |
Collapse
|
9
|
Awaad A, Rushdy A, Adly MA. Comparative microanatomical and histochemical biodistribution profiles of different types of mucins in oesophageal gastric tract mucosa of some tetrapod representatives. Histochem Cell Biol 2022; 157:217-238. [PMID: 34984523 DOI: 10.1007/s00418-021-02049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 02/05/2023]
Abstract
The microanatomical features of the oesophageal gastric tract in tetrapod representatives and their function, especially those related to the mucosal layer, have not yet been fully investigated. The mucosal layer cells and their function in the oesophageal gastric tract differ structurally and functionally in tetrapod representatives based on interspecies difference and the type of food and feeding habits. The present study was, therefore, postulated to compare the mucosal microanatomical structure and histochemical biodistribution of different mucin types in oesophageal gastric tract tissues of four tetrapod species. A representative of each tetrapod class was selected, as follows: the Egyptian toad Bufo regularis, the lizard Trachylepis quinquetaeniata, the domestic pigeon Columba livia domestica and the albino mouse Mus musculus for Amphibia, Reptilia, Aves and Mammalia, respectively. Microanatomically, in lower tetrapods (toad and lizard), the mucosal layer of the oesophagus was composed of simple ciliated columnar epithelium with goblet cells, whereas in higher tetrapods (pigeon and mouse) it was composed of stratified squamous epithelium, with non-keratinised epithelium in the pigeon but keratinised epithelium in the mouse. However, the gastric mucosal layer of the stomach in lower tetrapods consists of simple columnar epithelium and gastric glands. Similarly, the mucosa of the pigeon's proventriculus consists of simple columnar epithelium with proventricular glands opened into the lumen, whereas mouse mucosa consists of simple columnar epithelium which folds and forms gastric glands with gastric pits having a variety of cell types. Histochemically, the neutral mucin profile biodistribution in the oesophagus mucosal layer was variable. It was strongly positive in the toad and lizard, but was weak in the pigeon and completely negative in the mouse. In contrast it was strongly positive in the gastric mucosa of the toad, lizard and pigeon, but was weak in the mouse's gastric mucosa. On the other hand, the signals of carboxylated and sulfated mucins were found to be different. They were strong in the mucosa of the lizard oesophagus. In contrast, the carboxylated mucins in the gastric mucosa were positive in all representatives except the mouse. The sulfated mucins were, however, seen localised in the mucosal layer cells of the lizard and pigeon only. The study revealed that the microanatomical structures and functions as well as mucin distribution profiles in the oesophageal gastric tract are in line with interspecies difference and the type of food and feeding habits. However, this may need further investigations including more tetrapod representatives.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Ahmed Rushdy
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
10
|
Li M, Qi C, Song R, Xiong C, Zhong X, Song Z, Ning Z, Song X. Inhibition of Long Noncoding RNA SNHG20 Improves Angiotensin II-Induced Cardiac Fibrosis and Hypertrophy by Regulating the MicroRNA 335/ Galectin-3 Axis. Mol Cell Biol 2021; 41:e0058020. [PMID: 34228494 PMCID: PMC8384070 DOI: 10.1128/mcb.00580-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/29/2020] [Accepted: 06/12/2021] [Indexed: 11/20/2022] Open
Abstract
Cardiac fibrosis is a hallmark of various heart diseases and ultimately leads to heart failure. Although long noncoding RNA (lncRNA) SNHG20 has been reported to play important roles in various cancers, its function in cardiac fibrosis remains unclear. The expression of SNHG20 and microRNA 335 (miR-335) in heart tissues of angiotensin II-induced mice and angiotensin II-stimulated mouse cardiomyocyte cell line HL-1 were detected by quantitative real-time PCR (qRT-PCR). Cell viability was evaluated by cell counting kit-8 assay. The expression of galectin-3, fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA), and apoptosis-related proteins [cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP)] was detected by Western blotting. Bioinformatics prediction, luciferase reporter assay, and RNA pulldown assay were performed to determine the relationship between SNHG20 and miR-335 as well as miR-335 and Galectin-3. Gain- and loss-function assays were performed to determine the role of SNHG20/miR-335/Galectin-3 in cardiac fibrosis. SNHG20 was significantly upregulated and miR-335 was downregulated in heart tissues of angiotensin II-treated mice and angiotensin II-stimulated HL-1 cells. Downregulation of SNHG20 effectively enhanced cell viability and decreased cell size of HL-1 cells and the expression levels of fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA) and apoptosis-related proteins (cleaved caspase-3 and cleaved PARP), which were induced by angiotensin II treatment. Furthermore, SNHG20 elevated the expression levels of Galectin-3 by directly regulating miR-335. Our study revealed that downregulation of SNHG20 improved angiotensin II-induced cardiac fibrosis by targeting the miR-335/Galectin-3 axis, suggesting that SNHG20 is a therapeutic target for cardiac fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Chunli Qi
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Renxing Song
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Chunming Xiong
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiao Zhong
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Ziguang Song
- Department of Cardiology, The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Zhongping Ning
- Shanghai University of Medicine & Health Sciences, Zhoupu Hospital, Shanghai, China
| | - Xiang Song
- Shanghai University of Medicine & Health Sciences, Zhoupu Hospital, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Xie Y, Zhong R, Liu L, Lin C, Xiao L, Chen L, Zhang H, Beckers Y, Everaert N. Effects of Xylo-Oligosaccharides on Growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets. Front Microbiol 2021; 12:641172. [PMID: 33717037 PMCID: PMC7947891 DOI: 10.3389/fmicb.2021.641172] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1–28 (P < 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P < 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P < 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P < 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P < 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P < 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P < 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Yining Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changguang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Lin Xiao
- Shandong Longlive Bio-Technology Co., Ltd., Yucheng, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Liège University, Gembloux, Belgium
| |
Collapse
|
12
|
Silva CHS, Amarante MSM, Cordero-Schmidt E, Vargas-Mena JC, Barros MAS, Sartori SSR, Morais DB. Comparative Study on the Small and Large Intestines of the Bats Artibeus planirostris and Diphylla ecaudata: Influence of Food Habits on Morphological Parameters. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2020.22.2.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Carlos H. S. Silva
- Departament of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal-RN, 59078-970, Brazil
| | - Maria S. M. Amarante
- Departament of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal-RN, 59078-970, Brazil
| | - Eugenia Cordero-Schmidt
- Departament of Ecology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal-RN, 59078-970, Brazil
| | - Juan C. Vargas-Mena
- Departament of Ecology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal-RN, 59078-970, Brazil
| | - Marília A. S. Barros
- Departament of Zoology, Center of Biological Sciences, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| | - Sirlene S. R. Sartori
- Departament of Animal Biology, Center of Biological Sciences and Health, Federal University of Viçosa, Viçosa-MG, 36570-900, Brazil
| | - Danielle B. Morais
- Departament of Morphology, Center of Biosciences, Federal University of Rio Grande do Norte, Natal-RN, 59078-970, Brazil
| |
Collapse
|
13
|
Abstract
This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity—but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites. Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals. IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity—but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.
Collapse
|
14
|
El-Mansi AA, Al-Kahtani M, Abumandour MM. Comparative phenotypic and structural adaptations of tongue and gastrointestinal tract in two bats having different feeding habits captured from Saudi Arabia: Egyptian fruit bat (Rousettus aegyptiacus) and Egyptian tomb bat (Taphozous perforatus). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Zhang X, Nie H, Whited J, Wang D, Li Y, Sun XL. Recent approaches for directly profiling cell surface sialoform. Glycobiology 2019; 28:910-924. [PMID: 29800278 DOI: 10.1093/glycob/cwy046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (SAs) are nine-carbon monosaccharides existing at the terminal location of glycan structures on the cell surface and secreted glycoconjugates. The expression levels and linkages of SAs on cells and tissues, collectively known as sialoform, present the hallmark of the cells and tissues of different systems and conditions. Accordingly, detecting or profiling cell surface sialoforms is very critical for understanding the function of cell surface glycans and glycoconjugates and even the molecular mechanisms of their underlying biological processes. Further, it may provide therapeutic and diagnostic applications for different diseases. In the past decades, several kinds of SA-specific binding molecules have been developed for detecting and profiling specific sialoforms of cells and tissues; the experimental materials have expanded from frozen tissue to living cells; and the analytical technologies have advanced from histochemistry to fluorescent imaging, flow cytometry and microarrays. This review summarizes the recent bioaffinity approaches for directly detecting and profiling specific SAs or sialylglycans, and their modifications of different cells and tissues.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Joshua Whited
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| | - Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang, China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, USA
| |
Collapse
|
16
|
Abstract
Bats are a large and diverse group comprising approximately 20% of all living mammalian species. They are the only mammals capable of powered flight and have many unique characteristics, including long lifespans, echolocation, and hibernation, and play key roles in insect control, pollination, and seed dispersal. The role of bats as natural reservoirs of a variety of high-profile viruses that are highly pathogenic in other susceptible species yet cause no clinical disease in bats has led to a resurgence of interest in their immune systems. Equally compelling is the urgency to understand the immune mechanisms responsible for the susceptibility of bats to the fungus responsible for white syndrome, which threatens to wipe out a number of species of North American bats. In this chapter we review the current knowledge in the field of bat immunology, focusing on recent highlights and the need for further investigations in this area.
Collapse
|
17
|
Abstract
With over 1200 species identified, bats represent almost one quarter of the world’s mammals. Bats provide crucial environmental services, such as insect control and pollination, and inhabit a wide variety of ecological niches on all continents except Antarctica. Despite their ubiquity and ecological importance, relatively little has been published on diseases of bats, while much has been written on bats’ role as reservoirs in disease transmission. This chapter will focus on diseases and pathologic processes most commonly reported in captive and free-ranging bats. Unique anatomical and histological features and common infectious and non-infectious diseases will be discussed. As recognition of both the importance and vulnerability of bats grows, particularly following population declines in North America due to the introduction of the fungal disease white-nose syndrome, efforts should be made to better understand threats to the health of this unique group of mammals.
Collapse
|
18
|
Machado-Santos C, Aquino JCF, da Rocha PA, Abidu-Figueiredo M, de Brito-Gitirana L, Sales A. Influence of feeding habits in the endocrine pancreas of insectivore bat Pteronotus personatus and nectarivore bat Anoura geoffroyi: A comparative stereological and immunohistochemical study. Tissue Cell 2017; 49:1-7. [PMID: 28109546 DOI: 10.1016/j.tice.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Pteronotus personatus as an insectivore bat and has a diet that consists of a high protein diet, whereas the diet of Anoura geoffroyi, a predominantly nectarivore bat, is rich in simple sugars like sucrose, glucose and fructose. Considering that diet influences the activation of different pathways, which may influence morphological adaptations in the gastrointestinal system, the aim of this study was to compare the morphology of the endocrine pancreas in P. personatus and A. geoffroyi. For this, histological, stereological and immunohistochemical methods were used. In P. personatus, the average diameter of the pancreatic islet was 40.47μm±13.94, while in A. geoffroyi was 88.16μm±36.40. The total number of pancreatic islets in P. personatus was 26150±2346 and in A. geoffroyi was 15970±1666. In P. personatus, the volume density of the pancreatic islets was 3.4%± 2.6, whereas in A. geoffroyi the volume density was 6.1%±3.7. In addition, the immunodensity of the α, β and δ cells, in P. personatus was 25.8%±11.9, 35.5%±13.5, 3.9%±0.7, respectively, and in A. geoffroyi was 33.10%±12.7, 55.08%±7.4, 6.2%±4.6, respectively. In conclusion, the results of this study indicate differences in the pancreatic weight/body, weight ratio, diameter and volume density of pancreatic islets and in immunodensity of the β and α cells between both species, which have different dietary habits.
Collapse
Affiliation(s)
- Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Embryology, Biomedical Institute, Fluminense Federal University, RJ, Brazil.
| | - Júlio Cesar Fraulob Aquino
- Laboratory of Morphometry, Metabolism & Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | | | | | - Lycia de Brito-Gitirana
- Laboratory of Integrative Histology, Research Program in Glycobiology, Rio de Janeiro Federal University, RJ, Brazil
| | - Armando Sales
- Animal Biology Program, Rio de Janeiro Federal Rural University, RJ, Brazil
| |
Collapse
|
19
|
Pellicciari C. Is there still room for novelty, in histochemical papers? Eur J Histochem 2016; 60:2758. [PMID: 28076939 PMCID: PMC5381530 DOI: 10.4081/ejh.2016.2758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Histochemistry continues to be widely applied in biomedical research, being nowadays mostly addressed to detect and locate single molecules or molecular complexes inside cells and tissues, and to relate structural organization and function at the high resolution of the more advanced microscopical techniques. In the attempt to see whether histochemical novelties may be found in the recent literature, the articles published in the European Journal of Histochemistry in the period 2014-2016 have been reviewed. In the majority of the published papers, standardized methods have been preferred by scientists to make their results reliably comparable with the data in the literature, but several papers (approximately one fourth of the published articles) described novel histochemical methods and procedures. It is worth noting that there is a growing interest for minimally-invasive in vivo techniques (magnetic resonance imaging, autofluorescence spectroscopy), which may parallel conventional histochemical analyses to acquire evidence not only on the morphological features of living organs and tissues, but also on their functional, biophysical and molecular characteristics. Thanks to this unceasing methodological refinement, histochemistry will continue to provide innovative applications in the biomedical field.
Collapse
|
20
|
Pellicciari C. Histochemistry in biology and medicine: a message from the citing journals. Eur J Histochem 2015; 59:2610. [PMID: 26708189 PMCID: PMC4698620 DOI: 10.4081/ejh.2015.2610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.
Collapse
|