1
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical characterization of pancreas of Molly fish (Poecilia sphenops), with a special reference to its immune role. Microsc Res Tech 2023; 86:1667-1680. [PMID: 37610072 DOI: 10.1002/jemt.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
Recently, teleost species have been considered important model systems for investigating different research areas including immunologic one. The available literature provides poor data about the localization and the structure of pancreas in Molly fish. Moreover, little attention has been paid to the immunologic role of pancreatic tissue of teleost, particularly Molly fish; therefore, this study aimed to highlights the description of pancreatic tissue in Molly fish using light- and electron- microscopy, focusing on the role of pancreatic immune cells and pancreatic acinar cells in immune responses. Microscopic analysis revealed that the pancreas of Molly fish was composed of intrahepatic, disseminated and compact parts. Exocrine pancreatic tissue was diffusely extended within the hepatic tissue forming hepatopancreas. The disseminated pancreas appeared as several irregular nodules of pancreatic tissue localized within the mesenteric adipose tissue. The compact pancreas appeared as an oval shaped body embedded within the mesenteric adipose tissue between the spleen and the intestinal loops. Several telocytes and melanomacrophages were detected within the disseminated pancreatic nodules. Moreover, dendritic cells were found in a close association to the exocrine pancreatic acini. The pancreatic acinar cells showed strong immunoreactivity to APG5, TGF-β, IL-1β, NF-κB, Nrf2, and SOX9 in both hepatopancreas and disseminated pancreas of Molly fish. S100 protein revealed a strong expression in the exocrine pancreatic acinar cells of disseminated pancreas and also in the endocrine cells of the compact pancreas. In conclusion, findings of this study suggest the potential role of the pancreas of the Molly fish in cell proliferation and differentiation, proinflammatory cytokines stimulation, and regulation of both innate and adaptive immunity. RESEARCH HIGHLIGHTS: Telocytes and melanomacrophages were detected in the disseminated pancreatic nodules of the Molly fish. In Molly fish, dendritic cells were found in a close association to the exocrine pancreatic acini. Strong immunoreactivity of the pancreatic acinar cells of the Molly fish to APG5, TGF-β, IL-1β, NF-κB, Nrf2, SOX9, and S100.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assuit, Assiut, Egypt
| |
Collapse
|
2
|
Joglekar MV, Sahu S, Wong WKM, Satoor SN, Dong CX, Farr RJ, Williams MD, Pandya P, Jhala G, Yang SNY, Chew YV, Hetherington N, Thiruchevlam D, Mitnala S, Rao GV, Reddy DN, Loudovaris T, Hawthorne WJ, Elefanty AG, Joglekar VM, Stanley EG, Martin D, Thomas HE, Tosh D, Dalgaard LT, Hardikar AA. A Pro-Endocrine Pancreatic Islet Transcriptional Program Established During Development Is Retained in Human Gallbladder Epithelial Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1530-1553.e4. [PMID: 35032693 PMCID: PMC9043310 DOI: 10.1016/j.jcmgh.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Pancreatic islet β-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Sarang N Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Charlotte X Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Ryan J Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Michael D Williams
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Prapti Pandya
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Sundy N Y Yang
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Yi Vee Chew
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicola Hetherington
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Dhan Thiruchevlam
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Sasikala Mitnala
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | - Guduru V Rao
- Surgical Gastroenterology Research, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Thomas Loudovaris
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - Wayne J Hawthorne
- The Westmead Institute for Medical Research, Westmead Millenium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Edouard G Stanley
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - David Martin
- Upper Gastrointestinal Surgery, Strathfield Hospital, Strathfield, New South Wales, Australia
| | - Helen E Thomas
- Immunology and Diabetes Group, St. Vincent's Institute for Medical Research, Victoria, Australia
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Louise T Dalgaard
- Section of Eukaryotic Cell Biology, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.
| |
Collapse
|
3
|
Pellicciari C. Twenty years of histochemistry in the third millennium, browsing the scientific literature. Eur J Histochem 2020; 64. [PMID: 33478199 PMCID: PMC7789425 DOI: 10.4081/ejh.2020.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last twenty years, about 240,000 articles where histochemical techniques were used have been published in indexed journals, and their yearly number has progressively increased. The histochemical approach was selected by researchers with very different scientific interests, as the journals in which these articles were published fall within 140 subject categories. The relative proportion of articles in some of these journal categories did change over the years, and browsing the table of contents of the European Journal of Histochemistry, as an example of a strictly histochemical journal, it appeared that in recent years histochemical techniques were preferentially used to mechanistically investigate natural or experimentally induced dynamic processes, with reduced attention to purely descriptive works. It may be foreseen that, in the future, histochemistry will be increasingly focused on studying the molecular pathways responsible for cell differentiation, the maintenance or loss of the differentiated state, and tissue regeneration.
Collapse
|