1
|
Ye X, Chen Q, Gong X, Zhou C, Yuan T, Wang X, Hong L, Zhang J, Song H. STIM2 Suppression Blocks Glial Activation to Alleviate Brain Ischemia Reperfusion Injury via Inhibition of Inflammation and Pyroptosis. Mol Biotechnol 2024; 66:2046-2063. [PMID: 37572222 DOI: 10.1007/s12033-023-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/10/2023] [Indexed: 08/14/2023]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) involves various pathogenic mechanisms, including cytotoxicity, apoptosis, inflammation, and pyroptosis. Stromal interactive molecule 2 (STIM2) is implicated in cerebral ischemia. Consequently, this study investigates the biological functions of STIM2 and its related mechanisms in CIRI progression. Middle cerebral artery occlusion/reperfusion (MCAO/R) mouse models and oxygen-glucose deprivation/reoxygenation (OGD/R) cellular models were established. STIM2 level was upregulated in experimental CIRI models, as shown by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescence staining. Brain infarction and edema were attenuated by STIM2 knockdown, as 2,3,5-triphenyltetrazolium chloride (TTC) staining and brain water content evaluation revealed. STIM2 knockdown relieved neuronal apoptosis, microglia activation, inflammation and pyroptosis in MCAO/R mice, as detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA) and western blotting. Results of flow cytometry, ELISA, western blotting and cell counting kit-8 (CCK-8) assays also showed that STIM2 knockdown inhibited inflammation, apoptosis and pyroptosis in OGD/R-treated BV2 cells. Moreover, STIM2 knockdown inhibited apoptosis and pyroptosis in PC12 cells incubated with conditioned medium collected from OGD/R-exposed BV2 cells. Mechanistically, lncRNA Malat1 (metastasis associated lung adenocarcinoma transcript 1) positively regulated STIM2 expression by sponging miR-30d-5p. Their binding relationship was confirmed by luciferase reporter assays. Finally, lncRNA Malat1 elevation or miR-30d-5p knockdown abolished the sh-STIM2-induced inhibition in cell damage. In conclusion, STIM2 knockdown in microglia alleviates CIRI by inhibiting microglial activation, inflammation, apoptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xihong Ye
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Qinyi Chen
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Xingrui Gong
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Chunli Zhou
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Tian Yuan
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Xue Wang
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Lin Hong
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China
| | - Jianfeng Zhang
- Department of Anesthesiology&Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Jingzhou Road 136, Xiangcheng District, Xiangyang, Hubei, 441021, China.
| | - Hua Song
- Xiangyang Maternal and Child Health Hospital, Chunyuan Road 12,Fancheng District, Xiangyang, Hubei, 441021, China.
| |
Collapse
|
2
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
3
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01104-x. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
4
|
Bai X, Wang S, Li N, Xu M, Chen JL, Qian YP, Wang TH. Role of Qufeng Tongqiao Prescription in the protection of cerebral ischemia and associated molecular network mechanism. Chem Biol Drug Des 2024; 103:e14475. [PMID: 38433560 DOI: 10.1111/cbdd.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
To explore the of Qufeng Tongqiao Prescription in the treatment of cerebral ischemia-reperfusion (CIR) and associated molecular network mechanism. Venny diagram, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI), hub genes mining, molecular docking, combined with animal experiments and Nissl stain were performed to determine the molecular network mechanism of Qufeng Tongqiao Prescription for CIR treatment. Fifty three intersecting genes between Qufeng Tongqiao Prescription and cerebral ischemia reperfusion were acquired from Venny analysis. GO analysis showed that the main biological process (BP) was response to lipopolysaccharide, and the main cell localization (CC) process was membrane raft, while the most important molecular function (MF) process is Cytokine receptor binding. Moreover, AGE-RAGE signaling pathway in diabetic complications is the most important signaling pathway in KEGG pathway. Through molecular docking, it was found that Astragalus membranaceus was docked with MAPK14, IL4, FOS, IL6, and JUN; pueraria membranaceus was directly docked with JUN and IL4; Acorus acorus was linked to JUN and MAPK14; Ganoderma ganoderma and human were involved in JUN docking, and Ligusticum chuanqi and pueraria could not be docked with MAPK14, respectively. The results of animal experiments showed that Qufeng Tongqiao Prescription significantly improved behavioral performance and reduced the number of neuronal deaths in rats subjected to CIR, and molecular mechanisms are associated with FOS, IL-6, IL4, JUN, and MAPK14, of there, IL-6, as a vital candidator, which has been confirmed by immunostaining detection. Together, Qufeng Tongqiao Prescription has positive therapeutic effect on CIR, and the underlying mechanism is involved MAPK14, FOS, IL4, and JUN network, while IL-6 may be as a vital target.
Collapse
Affiliation(s)
- Xue Bai
- Department of Encephalopathy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Shen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Na Li
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Min Xu
- Department of Anatomy, College of basic medicine, Jinzhou Medical University, Jinzhou, China
| | - Ji-Lin Chen
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yan-Ping Qian
- Department of Gynecology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ting-Hua Wang
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Liu S, Jia X, Liu B, Liu Y, Yin H. Suppression of cerebral ischemia injury induced blood brain barrier breakdown by dexmedetomidine via promoting CCN1. Aging (Albany NY) 2024; 16:3750-3762. [PMID: 38364236 PMCID: PMC10929797 DOI: 10.18632/aging.205557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) could aggravate cerebral ischemia injury. Dexmedetomidine (Dex) has been believed to play a protective role in cerebral ischemia injury-induced BBB injury. METHODS Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD) models were established to simulate cerebral ischemia injury. Animal experiments included 4 groups, Sham, MCAO, MCAO+Dex, MCAO+Dex+sh-CCN1. Generally applicable gene set enrichment analysis was performed to analyze gene expression difference. Total collagen content and Evans blue staining were performed to measure infarct ratio and BBB breakdown, respectively. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and western blotting, respectively. The levels of IL-1β, TNF-α, and IL-6 in serum were measured with commercial ELISA kits. RESULTS Dex greatly promoted the expression level of CCN1. Dex suppressed cerebral ischemia injury, increased tight junction protein expression, improved the memory ability and neurological function of MCAO rats through targeting CCN1. The significant increase of inflammatory factors in the serum of MCAO rats were suppressed by Dex. Dex suppressed OGD induced increase of HRP permeability and promoting tight junction protein expression in vitro through regulating CCN1. The neurological function evaluation was performed with Neurological Severity Score (NSS) and Longa Score Scale. CONCLUSIONS Dex could remarkably alleviate cerebral ischemia injury by inhibiting BBB breakdown, inflammatory response, and promoting neurological function and tight junction protein expression via up-regulating CCN1. This study might provide a novel therapeutic target for the prevention and treatment of cerebral ischemia injury-induced BBB.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xuepeng Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Bo Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shenyang 110004, Liaoning, China
| | - Yue Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Hong Yin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
6
|
Kang T, Qin X, Lei Q, Yang Q. BRAP silencing protects against neuronal inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by promoting PON1 expression. ENVIRONMENTAL TOXICOLOGY 2023; 38:2645-2655. [PMID: 37647369 DOI: 10.1002/tox.23899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND BRCA1 associated protein (BRAP) participates in the regulation of myocardial infarction and atherosclerosis. But the function of BRAP in cerebral ischemia-reperfusion (CIR) injury has not been elucidated yet. METHODS BRAP expression in PC12 cells in response to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment was examined with Western blot assay. PC12 cells underwent OGD/R-treatment and were subsequently transfected with pcDNA-BRAP or sh-BRAP, followed by determination of viability, lactate dehydrogenase (LDH) production, apoptosis, inflammatory cytokine secretion, and oxidative stress marker protein levels. Paraoxonase 1 (PON1) promoter methylation was evaluated with methylation-specific PCR assay. the effect of BRAP/PON1 axis on CIR injury was investigated by rescue experiments. Additionally, sh-BRAP was injected into a middle cerebral artery occlusion (MCAO) rat model, and the changes of neurological damage were evaluated. RESULTS BRAP overexpression exacerbated OGD/R-induced viability reduction, LDH production, apoptosis, inflammatory cytokine secretion and oxidative stress in PC12 neuronal cells. In contrast, BRAP silencing showed the opposite results. Mechanistically, BRAP reduced PON1 expression by promoting DNA methyl transferase1 (DNMT1)-mediated PON1 promoter methylation. PON1 silencing reversed BRAP-mediated neuroprotection. Additionally, BRAP silencing alleviated CIR-induced neurological damage in MCAO rats. CONCLUSION BRAP silencing suppressed OGD/R-induced neuronal apoptosis, inflammation, and oxidative stress, and alleviated CIR-induced neurological damage in MCAO rats through facilitating PON1 expression.
Collapse
Affiliation(s)
- Tao Kang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Qin
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Cao GZ, Hou JY, Zhou R, Tian LL, Wang ML, Zhang Y, Xu H, Yang HJ, Zhang JJ. Single-cell RNA sequencing reveals that VIM and IFITM3 are vital targets of Dengzhan Shengmai capsule to protect against cerebral ischemic injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116439. [PMID: 37004745 DOI: 10.1016/j.jep.2023.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is one of the leading causes of mortality, but therapies are limited. Dengzhan Shengmai capsule (DZSM) was included by the Chinese Pharmacopoeia 2020 and has been broadly used for the treatment of ischemic stroke. However, the mechanism of DZSM against ischemic stroke is unclear. AIM OF THE STUDY This study used RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to investigate the mechanism of action of DZSM against ischemic stroke. MATERIALS AND METHODS The rats were randomly divided into six groups: the Sham, I/R (water), I/R + DZSM-L (0.1134g/kg), I/R + DZSM-H (0.4536g/kg), I/R + NMDP (20mg/kg), and I/R + Ginaton (20mg/kg). The rats were administrated drugs for 5 days then followed by the ischemic brain injury caused by middle cerebral artery occlusion (MCAO). The neuroprotective effect was assessed by infraction rate, neurological deficit scores, regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) staining, and Nissl staining. Based on RNA-seq and scRNA-seq, the vital biological processes and core targets of DZSM against cerebral ischemia were revealed. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining were used to investigate the vital biological processes and core targets of DZSM against ischemic stroke. RESULTS Administration of DZSM significantly reduced the infarction rate and Zea Longa score, Garcia JH score, and ameliorated the reduction in rCBF. And alleviated the neuronal damage, such as increased neuronal density level and Nissl bodies density level. RNA-seq analysis revealed that DZSM played important roles in inflammation and apoptosis. ELISA and IF straining validation confirmed that DZSM significantly decreased the expression of IL-6, IL-1β, TNF-α, ICAM-1, IBA-1, MMP9, and Cleaved caspase-3 in MCAO rats. ScRNA-seq analysis identified 8 core targets in neurons including HSPB1, SPP1, MT2A, GFAP, IFITM3, VIM, CRIP1, and GPD1, and VIM and IFITM3 was verified to be decreased by DZSM in neurons. CONCLUSION Our study illustrates the neuroprotective effect of DZSM against ischemia stroke, and VIM and IFITM3 were identified as vital targets in neurons of DZSM in protecting against MCAO-induced I/R injury.
Collapse
Affiliation(s)
- Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing-Yi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Mao-Lin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
8
|
Ge H, Ma X, Wang J, Zhang X, Zhang Y, Zhang Q, Li W, Liu J, Duan J, Shi W, Tian Y. A potential relationship between MMP-9 rs2250889 and ischemic stroke susceptibility. Front Neurol 2023; 14:1178642. [PMID: 37475739 PMCID: PMC10354235 DOI: 10.3389/fneur.2023.1178642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose Ischemic stroke (IS), a serious cerebrovascular disease, greatly affects people's health and life. Genetic factors are indispensable for the occurrence of IS. As a biomarker for IS, the MMP-9 gene is widely involved in the pathophysiological process of IS. This study attempts to find out the relationship between MMP-9 polymorphisms and IS susceptibility. Methods A total of 700 IS patients and 700 healthy controls were recruited. The single nucleotide polymorphism (SNP) markers of the MMP-9 gene were genotyped by the MassARRAY analyzer. Multifactor dimensionality reduction (MDR) was applied to generate SNP-SNP interaction. Furthermore, the relationship between genetic variations (allele and genotype) of the MMP-9 gene and IS susceptibility was analyzed by calculating odds ratios (ORs) and 95% confidence intervals (CIs). Results Our results demonstrated that rs2250889 could significantly increase the susceptibility to IS in the codominant, dominant, overdominant, and log-additive models (p < 0.05). Further stratification analysis showed that compared with the control group, rs2250889 was associated with IS risk in different case groups (age, female, smoking, and non-drinking) (p < 0.05). Based on MDR analysis, rs2250889 was the best model for predicting IS risk (cross-validation consistency: 10/10, OR = 1.56 (1.26-1.94), p < 0.001). Conclusion Our study preliminarily confirmed that SNP rs2250889 was significantly associated with susceptibility to IS.
Collapse
Affiliation(s)
- Hanming Ge
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Xiaojuan Ma
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jiachen Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobo Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yu Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qi Zhang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wu Li
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Liu
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jinwei Duan
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Medical Research Center, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Ye Tian
- Department of Neurology, Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Ding W, Gu Q, Liu M, Zou J, Sun J, Zhu J. Astrocytes-derived exosomes pre-treated by berberine inhibit neuroinflammation after stroke via miR-182-5p/Rac1 pathway. Int Immunopharmacol 2023; 118:110047. [PMID: 36996739 DOI: 10.1016/j.intimp.2023.110047] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Our previous studies have shown that berberine can improve the nerve function deficits in ischemic stroke by inhibiting inflammation. The cellular communication between astrocytes and neurons via exosomes might affect neurological function after ischemic stroke, which plays a vital role in the therapy of ischemic stroke. OBJECTIVE The present study focused on the effects of exosomes released from astrocytes induced by the glucose and oxygen deprivation model with berberine pretreatment (BBR-exos) treatment for ischemic stroke and its regulatory mechanism. METHODS Oxygen-glucose-deprivation/Reoxygenation (OGD/R)-treated primary cells were used to mimic cerebral ischemia/reperfusion conditions in vitro. With the treatment of BBR-exos and exosomes released from primary astrocytes induced by the glucose and oxygen deprivation model (OGD/R-exos), the cell viability was detected. C57BL/6J mice were used to establish middle cerebral artery occlusion/reperfusion (MCAO/R) model. The anti-neuroinflammation effects of BBR-exos and OGD/R-exos were evaluated. Subsequently, the key miRNA in BBR-exos was identified by exosomal miRNA sequencing and cell validation. miR-182-5p mimic and inhibitors were provided to verify the effects in inflammation. Finally, the binding sites between miR-182-5p and Rac1 were predicted online and verified by using a dual-luciferase reporter assay. RESULTS BBR-exos and OGD/R-exos both improved the decreased activity of OGD/R-induced neurons, and decreased the expression of IL-1β, IL-6 and TNF-α (all P < 0.05), which reduced neuronal injury and inhibited neuroinflammation in Vitro. And BBR-exos showed better effects (P < 0.05). The same effect has been verified in vivo experiments: BBR-exos and OGD/R-exos both reduced cerebral ischemic injury and inhibited neuroinflammation in MCAO/R mice (all P < 0.05). Likewise, BBR-exos showed better effects (P < 0.05). The exosomal miRNA sequencing results showed that miR-182-5p was highly expressed in BBR-exos and inhibited neuroinflammation by targeting Rac1 (P < 0.05). CONCLUSION BBR-exos can carry miR-182-5p to injured neurons and inhibit the expression of Rac1, which could inhibit neuroinflammation and improved brain injury after ischemic stroke.
Collapse
Affiliation(s)
- Wangli Ding
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiuchen Gu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Manman Liu
- Department of Pharmacy, Shanghai Children's Medical Center, Medical Department, Shanghai Jiao Tong University, Shanghai, China
| | - Junqing Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Altered Blood Brain Barrier Permeability and Oxidative Stress in Cntnap2 Knockout Rat Model. J Clin Med 2022; 11:jcm11102725. [PMID: 35628852 PMCID: PMC9146766 DOI: 10.3390/jcm11102725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by three core symptoms, specifically impaired social behavior, stereotypic/repetitive behaviors, and sensory/communication deficits. Although the exact pathophysiology of ASD is still unknown, host genetics, oxidative stress, and compromised blood brain barrier (BBB) have been implicated in predisposition to ASD. With regards to genetics, mutations in the genes such as CNTNAP2 have been associated with increased susceptibility of developing ASD. Although some studies observed conflicting results suggesting no association of CNTNAP2 with ASD, other investigations correlated this gene with autism. In addition, CNTNAP2 mediated signaling is generally considered to play a role in neurological disorders due to its critical role in neurodevelopment, neurotransmission, and synaptic plasticity. In this investigation, we studied BBB integrity and oxidative stress in Cntnap2−/− rats. We observed that the BBB permeability was significantly increased in Cntnap2−/− rats compared to littermate wild-type (WT) animals as determined by FITC-dextran and Evans blue assay. High levels of thiobarbituric acid reactive substances and lower amounts of reduced glutathione were observed in brain homogenates of Cntnap2−/− rats, suggesting oxidative stress. Brain sections from Cntnap2−/− rats showed intense inducible nitric oxide synthase immunostaining, which was undetectable in WT animals. Quantification of nitric oxide in brain homogenates revealed significantly high levels in Cntnap2−/− rats compared to the control group. As increased permeability of the BBB and oxidative stress have been observed in ASD individuals, our results suggest that Cntnap2−/− rats have a high construct and face validity and can be explored to develop effective therapeutic modalities.
Collapse
|