1
|
Melissourgou-Syka L, Gillespie MA, O'Cathail SM, Sansom OJ, Steele CW, Roxburgh CSD. A Review of Scheduling Strategies for Radiotherapy and Immune Checkpoint Inhibition in Locally Advanced Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:187-197. [PMID: 38143952 PMCID: PMC10734391 DOI: 10.36401/jipo-23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy across the globe and, despite advances in treatment strategies, survival rates remain low. Rectal cancer (RC) accounts for most of these cases, and traditional management strategies for advanced disease include total neoadjuvant therapy (TNT) with chemoradiotherapy followed by curative surgery. Unfortunately, approximately 10-15% of patients have no response to treatment or have recurrence at a short interval following radiotherapy. The introduction of immunotherapy in the form of immune checkpoint blockade (ICB) in metastatic colorectal cancer has improved clinical outcomes, yet most patients with RC present with microsatellite stable disease, which lacks the immune-rich microenvironment where ICB is most effective. There is evidence that combining radiotherapy with ICB can unlock the mechanisms that drive resistance in patients; however, the sequencing of these therapies is still debated. This review offers a comprehensive overview of clinical trials and preclinical models that use radiotherapy-immunotherapy combinations in RC in an attempt to extrapolate the ideal sequencing of the two treatment modalities. The results highlight the dearth of evidence to answer the question of whether ICB should be given before, during, or after radiotherapy, yet it is suggested that improving the relevance of our preclinical models will provide a platform with higher translational value and will lead to appropriate clinical trial designs.
Collapse
Affiliation(s)
- Lydia Melissourgou-Syka
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | | | - Sean M. O'Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Owen J. Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | - Colin W. Steele
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| | - Campbell S. D. Roxburgh
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| |
Collapse
|
2
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Yan Y, Cheong IH, Chen P, Li X, Wang X, Wang H. Patient-derived rectal cancer organoids—applications in basic and translational cancer research. Front Oncol 2022; 12:922430. [PMID: 35957894 PMCID: PMC9360321 DOI: 10.3389/fonc.2022.922430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and among the leading causes of death in both men and women. Rectal cancer (RC) is particularly challenging compared with colon cancer as the treatment after diagnosis of RC is more complex on account of its narrow anatomical location in the pelvis adjacent to the urogenital organs. More and more existing studies have begun to refine the research on RC and colon cancer separately. Early diagnosis and multiple treatment strategies optimize outcomes for individual patients. However, the need for more accurate and precise models to facilitate RC research is underscored due to the heterogeneity of clinical response and morbidity interrelated with radical surgery. Organoids generated from biopsies of patients have developed as powerful models to recapitulate many aspects of their primary tissue, consisting of 3-D self-organizing structures, which shed great light on the applications in both biomedical and clinical research. As the preclinical research models for RC are usually confused with colon cancer, research on patient-derived RC organoid models enable personalized analysis of cancer pathobiology, organizational function, and tumor initiation and progression. In this review, we discuss the various applications of patient-derived RC organoids over the past two years in basic cancer biology and clinical translation, including sequencing analysis, drug screening, precision therapy practice, tumor microenvironment studies, and genetic engineering opportunities.
Collapse
Affiliation(s)
- Yumeng Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Io Hong Cheong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
4
|
Uccello TP, Kintzel SA, Mills BN, Murphy JD, Garrett-Larsen J, Battaglia NG, Rodriguez CJ, Drage MG, Ye J, Love TM, Johnston CJ, Repasky EA, Qiu H, Linehan DC, Lord EM, Gerber SA. Development of an Orthotopic Murine Model of Rectal Cancer in Conjunction With Targeted Short-Course Radiation Therapy. Adv Radiat Oncol 2022; 7:100867. [PMID: 35036637 PMCID: PMC8749199 DOI: 10.1016/j.adro.2021.100867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Orthotopic tumors more closely recapitulate human cancers than do ectopic models; however, precision targeting of such internal tumors for radiation therapy (RT) without inducing systemic toxicity remains a barrier. We developed an innovative murine orthotopic rectal tumor model where the insertion of clinical grade titanium fiducial clips on opposing sides of the rectal tumor allowed for targeted administration of short-course radiation therapy (SCRT). With this novel approach, clinically relevant RT regimens can be administered to orthotopic tumors to explore the biology and efficacy of radiation alone or as a combination therapy in a murine model that closely recapitulates human disease. METHODS AND MATERIALS Murine Colon 38-luciferase tumor cells were injected into the rectal wall of syngeneic mice, and fiducial clips were applied to demarcate the tumor. An SCRT regimen consisting of 5 consecutive daily doses of 5 Gy delivered by an image-guided conformal small animal irradiator was administered 9 days after implantation. Tumor burden and survival were monitored along with histological and flow cytometric analyses on irradiated versus untreated tumors at various time points. RESULTS SCRT administered to orthotopic rectal tumors resulted in a reduction in tumor burden and enhanced overall survival with no apparent signs of systemic toxicity. This treatment paradigm resulted in significant reductions in tumor cellularity and increases in fibrosis and hyaluronic acid production, recapitulating the SCRT-induced effects observed in human cancers. CONCLUSIONS We have established a means to target murine orthotopic rectal tumors using fiducial markers with a fractionated and clinically relevant SCRT schedule that results in an RT response similar to what is observed in human rectal cancer. We also validated our model through examining various parameters associated with human cancer that are influenced by irradiation. This model can be used to further explore RT doses and scheduling, and to test combinatorial therapies.
Collapse
Affiliation(s)
- Taylor P. Uccello
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Sarah A. Kintzel
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York
| | - Bradley N. Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Joseph D. Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Nicholas G. Battaglia
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Carlos J. Rodriguez
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Michael G. Drage
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Tanzy M.T. Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York
| | - Carl J. Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Elizabeth A. Repasky
- Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, New York
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Edith M. Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Scott A. Gerber
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|