1
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Burns JM, Kalinosky BT, Sloan MA, Cerna CZ, Fines DA, Valdez CM, Voorhees WB. Dilation of the superior sagittal sinus detected in rat model of mild traumatic brain injury using 1 T magnetic resonance imaging. Front Neurol 2023; 14:1045695. [PMID: 37181576 PMCID: PMC10169716 DOI: 10.3389/fneur.2023.1045695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Mild traumatic brain injury (mTBI) is a common injury that can lead to temporary and, in some cases, life-long disability. Magnetic resonance imaging (MRI) is widely used to diagnose and study brain injuries and diseases, yet mTBI remains notoriously difficult to detect in structural MRI. mTBI is thought to be caused by microstructural or physiological changes in the function of the brain that cannot be adequately captured in structural imaging of the gray and white matter. However, structural MRIs may be useful in detecting significant changes in the cerebral vascular system (e.g., the blood-brain barrier (BBB), major blood vessels, and sinuses) and the ventricular system, and these changes may even be detectable in images taken by low magnetic field strength MRI scanners (<1.5T). Methods In this study, we induced a model of mTBI in the anesthetized rat animal model using a commonly used linear acceleration drop-weight technique. Using a 1T MRI scanner, the brain of the rat was imaged, without and with contrast, before and after mTBI on post-injury days 1, 2, 7, and 14 (i.e., P1, P2, P7, and P14). Results Voxel-based analyses of MRIs showed time-dependent, statistically significant T2-weighted signal hypointensities in the superior sagittal sinus (SSS) and hyperintensities of the gadolinium-enhanced T1-weighted signal in the superior subarachnoid space (SA) and blood vessels near the dorsal third ventricle. These results showed a widening, or vasodilation, of the SSS on P1 and of the SA on P1-2 on the dorsal surface of the cortex near the site of the drop-weight impact. The results also showed vasodilation of vasculature near the dorsal third ventricle and basal forebrain on P1-7. Discussion Vasodilation of the SSS and SA near the site of impact could be explained by the direct mechanical injury resulting in local changes in tissue function, oxygenation, inflammation, and blood flow dynamics. Our results agreed with literature and show that the 1T MRI scanner performs at a level comparable to higher field strength scanners for this type of research.
Collapse
Affiliation(s)
- Jennie M. Burns
- General Dynamics Information Technology, Defense Division, JBSA Fort SamHouston, TX, United States
| | - Benjamin T. Kalinosky
- General Dynamics Information Technology, Defense Division, JBSA Fort SamHouston, TX, United States
| | - Mark A. Sloan
- General Dynamics Information Technology, Defense Division, JBSA Fort SamHouston, TX, United States
| | - Cesario Z. Cerna
- General Dynamics Information Technology, Defense Division, JBSA Fort SamHouston, TX, United States
| | - David A. Fines
- General Dynamics Information Technology, Defense Division, JBSA Fort SamHouston, TX, United States
| | - Christopher M. Valdez
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA FortSam Houston, TX, United States
| | - William B. Voorhees
- Radio Frequency Bioeffects Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA FortSam Houston, TX, United States
| |
Collapse
|
3
|
Sathish M, Girinivasan C. Is Use of Topical Vancomycin in Pediatric Spine Surgeries a Safe Option in the Prevention of Surgical Site Infections? A Meta-analysis and Systematic Review of the Literature. Global Spine J 2021; 11:774-781. [PMID: 32677529 PMCID: PMC8165936 DOI: 10.1177/2192568220937286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE To systematically review the available articles on topical vancomycin powder (TVP) use in pediatric spine surgeries exploring the usefulness and safety of such practice. METHODS We conducted an independent and duplicate electronic database search in PubMed, EMBASE, and Cochrane Library till March 2020 to identify all relevant literature on the use of TVP for pediatric spine surgeries. Surgical site infection (SSI) rate, specific reported complications, reoperation rate, microbial flora pattern in reported SSIs, and safety profile were the outcomes analyzed. Analysis was performed with the R platform using OpenMeta[Analyst] software. RESULTS No prospective studies were available to evaluate the use of TVP in pediatric spine surgeries for the prevention of SSIs. Neither standardized protocol, nor drug dosage, nor safety profile was established for pediatric use. Three retrospective cohort studies including 824 patients (TVP/control: 400/424) were included in the meta-analysis. There was low-quality evidence suggesting no significant difference between the 2 groups in SSI rate (RR = 0.474; 95% CI = [0.106,2.112]; P = .327) with significant heterogeneity (I2 = 70.14; P = .035). The TVP group showed a significant benefit on cost analysis in one of the included studies. However, TVP did not prevent gram-negative coinfection on SSI in the TVP group. CONCLUSION From the literature available at present, TVP does not qualify to be recommended as a safe and useful option to prevent SSI following pediatric spine surgeries. High-quality prospective interventional studies are needed to arrive at a consensus on its use along with appropriate dosage and method of application.
Collapse
Affiliation(s)
- Muthu Sathish
- Government Hospital Velayuthampalayam, Karur, Tamil Nadu, India
- A Researcher, Orthopaedic Research Group, India
- Muthu Sathish, Government Hospital Velayuthampalayam, Karur, Tamil Nadu, and Researcher, Orthopaedic Research Group, India.
| | - Chellamuthu Girinivasan
- Ganga Hospitals, Coimbatore, Tamil Nadu, India
- A Researcher, Orthopaedic Research Group, India
| |
Collapse
|