1
|
Madonna R, Ghelardoni S. Sotatercept in pulmonary hypertension and beyond. Eur J Clin Invest 2025:e14386. [PMID: 39825683 DOI: 10.1111/eci.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2. In this way, sotatercept activates an antiproliferative signalling to the cells of the pulmonary arteries and arterioles with the aim of rebalancing the proliferative and antiproliferative pathway that characterizes the pulmonary arterial hypertension (PAH). Sotatercept is indicated for the treatment of group 1 PAH in combination with drugs that act through the endothelin receptor, nitric oxide or prostacyclin. Its effects, demonstrated in the STELLAR study, are the improvement of exercise capacity and the FC-WHO functional class, together with the reduction of the risk of clinical worsening events. In addition to its antiremodeling effects on the pulmonary circulation, sotatercept has several haematological effects that could suggest its use in the treatment of some blood disorders other than PAH. In this review, we will discuss the effects of the drug on PAH and in parallel provide an in-depth overview of its application in haematological disorders, focusing on clinical and preclinical studies.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Cardiology Division, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC, Chiu CC. Molecular genetics of β-thalassemia: A narrative review. Medicine (Baltimore) 2021; 100:e27522. [PMID: 34766559 PMCID: PMC8589257 DOI: 10.1097/md.0000000000027522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT β-thalassemia is a hereditary hematological disease caused by over 350 mutations in the β-globin gene (HBB). Identifying the genetic variants affecting fetal hemoglobin (HbF) production combined with the α-globin genotype provides some prediction of disease severity for β-thalassemia. However, the generation of an additive composite genetic risk score predicts prognosis, and guide management requires a larger panel of genetic modifiers yet to be discovered.Presently, using data from prior clinical trials guides the design of further research and academic studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene therapy approaches.Genetic studies have successfully characterized the causal variants and pathways involved in HbF regulation, providing novel therapeutic targets for HbF reactivation. In addition to these HBB mutation-independent strategies involving HbF synthesis de-repression, the expanding genome editing toolkit provides increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin restoration for personalized treatment of hemoglobinopathies. Allogeneic hematopoietic stem cell transplantation was, until very recently, the curative option available for patients with transfusion-dependent β-thalassemia. Gene therapy currently represents a novel therapeutic promise after many years of extensive preclinical research to optimize gene transfer protocols.We summarize the current state of developments in the molecular genetics of β-thalassemia over the last decade, including the mechanisms associated with ineffective erythropoiesis, which have also provided valid therapeutic targets, some of which have been shown as a proof-of-concept.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Yen Chang
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
3
|
Madeddu C, Neri M, Sanna E, Oppi S, Macciò A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J Exp Pharmacol 2021; 13:593-611. [PMID: 34194245 PMCID: PMC8238072 DOI: 10.2147/jep.s262349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia in cancer patients is a relevant condition complicating the course of the neoplastic disease. Overall, we distinguish the anemia which arises under chemotherapy as pure adverse event of the toxic effects of the drugs used, and the anemia induced by the tumour-associated inflammation, oxidative stress, and systemic metabolic changes, which can be worsened by the concomitant anticancer treatments. This more properly cancer-related anemia depends on several overlapping mechanism, including impaired erythropoiesis and functional iron deficiency, which make its treatment more difficult. Standard therapies approved and recommended for cancer anemia, as erythropoiesis-stimulating agents and intravenous iron administration, are limited to the treatment of chemotherapy-induced anemia, preferably in patients with advanced disease, in view of the still unclear effect of erythropoiesis-stimulating agents on tumour progression and survival. Outside the use of chemotherapy, there are no recommendations for the treatment of cancer-related anemia. For a more complete approach, it is fundamentally a careful evaluation of the type of anemia and iron homeostasis, markers of inflammation and changes in energy metabolism. In this way, anemia management in cancer patient would permit a tailored approach that could give major benefits. Experimental drugs targeting hepcidin and activin II receptor pathways are raising great expectations, and future clinical trials will confirm their role as remedies for cancer-related anemia. Recent evidence on the effect of integrated managements, including nutritional support, antioxidants and anti-inflammatory substances, for the treatment of cancer anemia are emerging. In this review article, we show standard, innovative, and experimental treatment used as remedy for anemia in cancer patients.
Collapse
Affiliation(s)
- Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manuela Neri
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Sara Oppi
- Hematology and Transplant Center, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| | - Antonio Macciò
- Department of Gynecologic Oncology, A. Businco Hospital, ARNAS G. Brotzu, Cagliari, Italy
| |
Collapse
|
4
|
Abstract
Rare anemias (RA) are mostly hereditary disorders with low prevalence and a broad spectrum of clinical severity, affecting different stages of erythropoiesis or red blood cell components. RA often remains underdiagnosed or misdiagnosed, and treatment options have been limited to supportive care for many years. During the last decades, the elucidation of the molecular mechanisms underlying several RA paved the way for developing new treatments. Innovative treatments other than supportive care and allogeneic bone marrow transplantation are currently in clinical trials for β-thalassemias, sickle cell disease (SCD), and congenital hemolytic anemias. Recently, luspatercept, an activin receptor ligand trap targeting ineffective erythropoiesis, has been approved as the first pharmacological treatment for transfusion-dependent β-thalassemia. L-glutamine, voxelotor, and crizanlizumab are new drugs approved SCD, targeting different steps of the complex pathophysiological mechanism. Gene therapy represents an innovative and encouraging strategy currently under evaluation in several RA and recently approved for β-thalassemia. Moreover, the advent of gene-editing technologies represents an additional option, mainly focused on correcting the defective gene or editing the expression of genes that regulate fetal hemoglobin synthesis. In this review, we aim to update the status of innovative treatments and the ongoing trials and discuss RA treatments’ future directions. Interestingly, several molecules that showed promising results for treating one of these disorders are now under evaluation in the others. In the near future, the management of RA will probably consist of polypharmacotherapy tailored to patients’ characteristics.
Collapse
|
5
|
Parisi S, Finelli C, Fazio A, De Stefano A, Mongiorgi S, Ratti S, Cappellini A, Billi AM, Cocco L, Follo MY, Manzoli L. Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia. Int J Mol Sci 2021; 22:ijms22020827. [PMID: 33467674 PMCID: PMC7830211 DOI: 10.3390/ijms22020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and β-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or β-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-β, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and β-thalassemia.
Collapse
Affiliation(s)
- Sarah Parisi
- Department of Oncology and Hematology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.P.); (C.F.)
- Department of Experimental, Diagnostic and Specialty Medicine DIMES, Institute of Hematology “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Carlo Finelli
- Department of Oncology and Hematology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.P.); (C.F.)
- Department of Experimental, Diagnostic and Specialty Medicine DIMES, Institute of Hematology “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| | - Matilde Y. Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
- Correspondence:
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.F.); (A.D.S.); (S.M.); (S.R.); (A.C.); (A.M.B.); (L.C.); (L.M.)
| |
Collapse
|