1
|
Leong DY, Chee RY, Lui YS. Psychiatric care for a person with MELAS syndrome: A case report. Clin Case Rep 2021; 9:e04146. [PMID: 34026177 PMCID: PMC8134952 DOI: 10.1002/ccr3.4146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 11/24/2022] Open
Abstract
This report provides information for future clinicians who may be involved in treating patients with mitochondrial disorders manifesting with psychiatric problems, as literature in treatment is limited. The interventions focus on both carefully crafted medication therapy and nondrug methods to manage the challenging behaviors in a medically infirmed person.
Collapse
Affiliation(s)
- Douglas Yeung Leong
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| | - Rei Yen Chee
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| | - Yit Shiang Lui
- Department of Psychological MedicineNational University HospitalSingapore CitySingapore
| |
Collapse
|
2
|
Chichagova V, Hallam D, Collin J, Buskin A, Saretzki G, Armstrong L, Yu-Wai-Man P, Lako M, Steel DH. Human iPSC disease modelling reveals functional and structural defects in retinal pigment epithelial cells harbouring the m.3243A > G mitochondrial DNA mutation. Sci Rep 2017; 7:12320. [PMID: 28951556 PMCID: PMC5615077 DOI: 10.1038/s41598-017-12396-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
The m.3243A > G mitochondrial DNA mutation was originally described in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. The phenotypic spectrum of the m.3243A > G mutation has since expanded to include a spectrum of neuromuscular and ocular manifestations, including reduced vision with retinal degeneration, the underlying mechanism of which remains unclear. We used dermal fibroblasts, from patients with retinal pathology secondary to the m.3243A > G mutation to generate heteroplasmic induced pluripotent stem cell (hiPSC) clones. RPE cells differentiated from these hiPSCs contained morphologically abnormal mitochondria and melanosomes, and exhibited marked functional defects in phagocytosis of photoreceptor outer segments. These findings have striking similarities to the pathological abnormalities reported in RPE cells studied from post-mortem tissues of affected m.3243A > G mutation carriers. Overall, our results indicate that RPE cells carrying the m.3243A > G mutation have a reduced ability to perform the critical physiological function of phagocytosis. Aberrant melanosomal morphology may potentially have consequences on the ability of the cells to perform another important protective function, namely absorption of stray light. Our in vitro cell model could prove a powerful tool to further dissect the complex pathophysiological mechanisms that underlie the tissue specificity of the m.3243A > G mutation, and importantly, allow the future testing of novel therapeutic agents.
Collapse
Affiliation(s)
- Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Gabriele Saretzki
- Institute for Cell and Molecular Biosciences and The Ageing Biology Centre, Campus for Ageing and Vitality, Newcastle University, NE4 5PL, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, EC1V 2PD, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom.
| | - David H Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom.
| |
Collapse
|
3
|
Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 2014; 29:19-36. [PMID: 24557875 DOI: 10.1007/s11011-013-9435-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage. This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways. Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage. It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.
Collapse
|
4
|
Lin J, Zhao CB, Lu JH, Wang HJ, Zhu WH, Xi JY, Lu J, Luo SS, Ma D, Wang Y, Xiao BG, Lu CZ. Novel mutations m.3959G>A and m.3995A>G in mitochondrial gene MT-ND1 associated with MELAS. ACTA ACUST UNITED AC 2013; 25:56-62. [PMID: 23834081 DOI: 10.3109/19401736.2013.779259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) are progressive neurodegenerative disorder associated with polygenetic, maternally inherited mutations in mitochondrial DNA. Approximately 80% of MELAS cases are caused by the mutation m.3243A>G of the mitochondrial tRNA(Leu (UUR)) gene (MT-TL1). We reported two probands with MELAS features. Muscle biopsy identified ragged-red fibers (RRF) in Gomori Trichrome staining. A respiratory chain function study showed decreased activity of mitochondrial respiratory chain complex I in both probands. Sequencing of the mitochondrial DNA revealed two novel MT-ND1 gene missense mutations, m.3959G>A and m.3995A>G, which are highly conserved among species. Protein secondary structure predictions demonstrated that these mutations may alter the peptide structure and may lead to decreased ND1 gene stability. Our findings suggest that these two novel mutations may contribute to the MELAS phenotypes of the patients in our study.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurology, Huashan Hospital
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kaufman KR, Zuber N, Rueda-Lara MA, Tobia A. MELAS with recurrent complex partial seizures, nonconvulsive status epilepticus, psychosis, and behavioral disturbances: case analysis with literature review. Epilepsy Behav 2010; 18:494-7. [PMID: 20580320 DOI: 10.1016/j.yebeh.2010.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 11/17/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) is a progressive neurodegenerative disorder associated with polygenetic, maternally inherited, mitochondrial DNA mutations. MELAS has multisystem presentation including neurological, muscular, endocrine, auditory, visual, cardiac, psychiatric, renal, gastrointestinal and dermatological symptoms. Clinical course and prognosis are variable, often leading to cognitive decline, disability, and premature death. Both convulsive status epilepticus (CSE) and nonconvulsive status epilepticus (NCSE) are reported with MELAS. This report illustrates a case of MELAS with recurrent complex partial seizures, NCSE, confusion, aggressive behaviors, hallucinations, and paranoid delusions. Rapid video/EEG confirmation of diagnosis and aggressive antiepileptic drug intervention are required. Further education of medical professionals regarding this disorder, its appropriate management, and the significance of NCSE is indicated to avoid delay of treatment.
Collapse
Affiliation(s)
- Kenneth R Kaufman
- Department of Psychiatry, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
6
|
Price JR, Bastiampillai T, Dhillon RS. Is depot medication safe in the setting of myopathy? Aust N Z J Psychiatry 2009; 43:781-3. [PMID: 19629801 DOI: 10.1080/00048670903002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Joanna Ruth Price
- Department of Psychiatry, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Tarun Bastiampillai
- Department of Psychiatry, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Rohan Singh Dhillon
- Department of Psychiatry, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Abstract
Metabolic myopathies are inborn errors of metabolism that result in impaired energy production due to defects in glycogen, lipid, mitochondrial, and possibly adenine nucleotide metabolism. Fatty acid oxidation defects (FAOD), glycogen storage disease, and mitochondrial myopathies represent the 3 main groups of disorders, and some consider myoadenylate deaminase (AMPD1 deficiency) to be a metabolic myopathy. Clinically, a variety of neuromuscular presentations are seen at different ages of life. Newborns and infants commonly present with hypotonia and multisystem involvement (liver and brain), whereas onset later in life usually presents with exercise intolerance with or without progressive muscle weakness and myoglobinuria. In general, the glycogen storage diseases result in high-intensity exercise intolerance, whereas the FAODs and the mitochondrial myopathies manifest predominately during endurance-type activity or under fasted or other metabolically stressful conditions. The clinical examination is often normal, and testing requires various combinations of exercise stress testing, serum creatine kinase activity and lactate concentration determination, urine organic acids, muscle biopsy, neuroimaging, and specific genetic testing for the diagnosis of a specific metabolic myopathy. Prenatal screening is available in many countries for several of the FAODs through liquid chromatography-tandem mass spectrometry. Early identification of these conditions with lifestyle measures, nutritional intervention, and cofactor treatment is important to prevent or delay the onset of muscle weakness and to avoid potential life-threatening complications such as rhabdomyolysis with resultant renal failure or hepatic failure. This article will review the key clinical features, diagnostic tests, and treatment recommendations for the more common metabolic myopathies, with an emphasis on mitochondrial myopathies.
Collapse
|