1
|
Sun Y, Li R, Li W, Zhang N, Liu G, Zhao B, Mei Z, Gu S, He Z. Roles of m 6A modification in regulating PPER pathway in cadmium-induced pancreatic β cell death. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116672. [PMID: 38968870 DOI: 10.1016/j.ecoenv.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Cadmium can lead to the death of pancreatic β cells, thus affecting the synthesis and secretion of insulin. However, the specific mechanisms underlying the cadmium-induced pancreatic β cell death have not been fully understood. In this study, roles of m6A modification in regulating protein processing in endoplasmic reticulum (PPER) pathway in cadmium-induced pancreatic β cell death were explored. Our results demonstrated that cell viability and RNA m6A modification level were decreased, while apoptosis rates increased after CdSO4 treatment in pancreatic β cells (NIT-1). In addition, expressions of Bcl-2, Xbp1, Col3a1, Bax, Chop, Dnajb1, and Hsp90aa1 were all significantly changed in CdSO4 treatment cells. The m6A agonist entacapone (Ent) can prominently reverse the cytotoxicity effects of CdSO4 and alleviate the changes of protein expression induced by CdSO4 treatment. By contrast, m6A inhibitor 3-Deazaadenosine (DAA) can synergistically enhance the cytotoxicity of CdSO4 and aggravate the disorder of protein levels caused by CdSO4 treatment. Interestingly, the results of the immunoprecipitation experiment indicate that Ythdc2, one of m6A binding proteins, may regulate the PPER pathway molecules in an m6A-dependent manner. In summary, our findings provide new directions for the prevention and treatment of the impairment of pancreatic β cell function induced by cadmium.
Collapse
Affiliation(s)
- Yifei Sun
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China; Yunnan Center for Disease Control and Prevention, 1177 Xianghe Street, Chenggong District, Kunming, Yunnan 650500, People's Republic of China
| | - Rongxian Li
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Wenhong Li
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Nan Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Bo Zhao
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Zongqin Mei
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| |
Collapse
|
2
|
Xiao Y, Liang Z, Qiao J, Zhu Z, Liu B, Tian Y. BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage. Mol Med 2024; 30:100. [PMID: 38992588 PMCID: PMC11241864 DOI: 10.1186/s10020-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.
Collapse
Affiliation(s)
- Yuehai Xiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Zongjian Liang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Jun Qiao
- Department of Urology, School of Nursing, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Zhiqiang Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Bei Liu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China
| | - Yuan Tian
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Clinical Medical College of Guizhou Medical University, No.28 Guiyi Street, Yunyan District, Guiyang, Guizhou Province, 550004, China.
| |
Collapse
|
3
|
Song J, Wang Y, Zhu Z, Wang W, Yang H, Shan Z. Negative Regulation of LINC01013 by METTL3 and YTHDF2 Enhances the Osteogenic Differentiation of Senescent Pre-Osteoblast Cells Induced by Hydrogen Peroxide. Adv Biol (Weinh) 2024; 8:e2300642. [PMID: 38548669 DOI: 10.1002/adbi.202300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Indexed: 05/15/2024]
Abstract
Senescent pre-osteoblasts have a reduced ability to differentiate, which leads to a reduction in bone formation. It is critical to identify the keys that regulate the differentiation fate of senescent pre-osteoblasts. LINC01013 has an essential role in cell stemness, differentiation, and senescence regulation. This study aims to examine the role and mechanism of LINC01013 in regulating osteogenic differentiation in senescent human embryonic osteoblast cell line (hFOB1.19) cells induced by hydrogen peroxide (H2O2). The results show that LINC01013 decreased alkaline phosphatase activity, mineralization of hFOB1.19 cells in vitro, and the expression of collagen II, osteocalcin, and bone sialoprotein. LINC01013 knockdown enhances the osteogenesis of hFOB1.19 cells and rescues osteogenic differentiation impaired by H2O2. METTL3 negatively regulates LINC01013 expression, enhancing hFOB1.19 cells' osteogenesis in vitro and in vivo. METTL3 overexpression can enhance hFOB1.19 cells' osteogenic differentiation impaired by H2O2. YTHDF2 promotes LINC01013 decay, facilitating osteogenic differentiation. YTHDF2 overexpression rescues hFOB1.19 cells osteogenic differentiation impaired by H2O2. Taken together, METTL3 upregulates osteogenic differentiation by inhibiting LINC01013, and YTHDF2 accelerates LINC01013 degradation, reducing its inhibitory effect. This study highlights LINC01013 as a key regulator in the fate switching process of senescent hFOB1.19 cells, impacting osteogenic differentiation.
Collapse
Affiliation(s)
- Jiaxin Song
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuejun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhao Zhu
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wanqing Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
4
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|