1
|
Ashok G, Basu S, Priyamvada P, Anbarasu A, Chintala S, Ramaiah S. Coinfections in human papillomavirus associated cancers and prophylactic recommendations. Rev Med Virol 2024; 34:e2524. [PMID: 38375992 DOI: 10.1002/rmv.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The Human Papillomavirus (HPV) infection is responsible for more than 80% of reported cervical cancer and other virus-associated tumours. Although this global threat can be controlled using effective vaccination strategies, a growing perturbation of HPV infection is an emerging coinfection likely to increase the severity of the infection in humans. Moreover, these coinfections prolong the HPV infections, thereby risking the chances for oncogenic progression. The present review consolidated the clinically significant microbial coinfections/co-presence associated with HPV and their underlying molecular mechanisms. We discussed the gaps and concerns associated with demography, present vaccination strategies, and other prophylactic limitations. We concluded our review by highlighting the potential clinical as well as emerging computational intervention measures to kerb down HPV-associated severities.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu, India
- Department of Biotechnology, NIST University, Berhampur, Odisha, India
| | | | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu, India
| | - Sreenivasulu Chintala
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, SBST, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Yao J, Zhu Y, Zhang G, Zhou X, Shang H, Li L, Xu T. Action mechanisms and characteristics of miRNAs to regulate virus replication. Virology 2024; 590:109966. [PMID: 38100983 DOI: 10.1016/j.virol.2023.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
MicroRNAs (miRNAs) have the potential to be explored as antiviral products. It is known that miRNAs have different kinds of target mRNAs and different target sites in mRNAs, and that the action-modes of miRNAs at different target sites may be different. But there is no evidence demonstrating the significance of the differences for the regulation of viruses by miRNAs, which might be crucial for the exploration of miRNA-based antiviral products. Here the experimental studies about the antiviral effects of miRNAs, with validated target mRNAs and target sites in the mRNAs, were systematically collected, based on which the mechanisms whereby miRNAs regulated virus replication were systematically reviewed. And miRNAs' down-regulation rates on target mRNAs and antiviral rates were compared among the miRNAs with different target sites, to analyze the characteristics of action-modes of miRNAs at different target sites during virus replication.
Collapse
Affiliation(s)
- Jia Yao
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Genrong Zhang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Xianfeng Zhou
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Hongcai Shang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China; Shang Hongcai, Key Laboratory of Chinese Internal Medicine of MOE and Beijing University of Chinese Medicine, 11 Eastern Section of the North Third Ring Road, Chaoyang District, Beijing, 100029, PR China.
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| |
Collapse
|
3
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Malik S, Sah R, Muhammad K, Waheed Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts-A Comprehensive Review. Vaccines (Basel) 2023; 11:102. [PMID: 36679945 PMCID: PMC9860736 DOI: 10.3390/vaccines11010102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) are high-risk causative factors for HPV infection. This infection does not come alone; it is often seen with co-infection with other viruses and acts as a causative agent for several malignancies. The major purpose of this comprehensive study was to highlight some recent advances in biotechnology associated with HPV infection, including understanding its host interactions and cancerous progression. A systematic research strategy was used to gather data from recent, and the most advanced published electronic sources. The compiled data explain the recent understanding of biology, host-viral interaction cycles, co-infection with other viral diseases, and cellular transformation toward malignancies associated with HPV. In recent years, some vaccination protocols have been introduced in the form of live attenuated, subunit, and DNA-based vaccines. Moreover, some strategies of nanotechnology are being employed to synthesize drugs and vaccines with a whole new approach of plant-based products. The data are immense for the proposed research question, yet the need is to implement modern follow-up screening and modern therapeutics at the clinical level and to conduct wide-scale public awareness to lessen the HPV-related disease burden.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
5
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|