1
|
Diversity and distribution of ectoparasite taxa associated with Micaelamys namaquensis (Rodentia: Muridae), an opportunistic commensal rodent species in South Africa. Parasitology 2022; 149:1229-1248. [PMID: 35641880 PMCID: PMC10090637 DOI: 10.1017/s0031182022000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
South Africa boasts a rich diversity of small mammals of which several are commensal and harbour parasites of zoonotic importance. However, limited information is available on the parasite diversity and distribution associated with rodents in South Africa. This is particularly relevant for Micaelamys namaquensis (Namaqua rock mouse), a regionally widespread and locally abundant species that is often commensal. To address the paucity of data, the aims of the study were to record the ectoparasite diversity associated with M. namaquensis and develop distribution maps of lice and mites associated with M. namaquensis and other rodents in South Africa. Micaelamys namaquensis individuals (n = 216) were obtained from 12 localities representing multiple biomes during 2017–2018. A total of 5591 ectoparasites representing 5 taxonomic groups – fleas, lice, mesostigmatid mites, chiggers and ticks was recorded. These consisted of at least 57 taxa of which ticks were the most speciose (20 taxa). Novel contributions include new host and locality data for several ectoparasite taxa and undescribed chigger species. Known vector species were recorded which included fleas (Ctenocephalides felis, Dinopsyllus ellobius and Xenopsylla brasiliensis) and ticks (Haemaphysalis elliptica, Rhipicephalus appendiculatus and Rhipicephalus simus). Locality records indicate within-taxon geographic differences between the 2 louse species and the 2 most abundant mite species. It is clear that M. namaquensis hosts a rich diversity of ectoparasite taxa and, as such, is an important rodent species to monitor in habitats where it occurs in close proximity to humans and domestic animals.
Collapse
|
2
|
Ledwaba MB, Nozipho K, Tembe D, Onyiche TE, Chaisi ME. Distribution and prevalence of ticks and tick-borne pathogens of wild animals in South Africa: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100088. [PMID: 35601607 PMCID: PMC9114622 DOI: 10.1016/j.crpvbd.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022]
Abstract
Ticks are significant ectoparasites of animals and humans. Published data indicate that most vectors that transmit livestock and human pathogens in sub-Saharan Africa, are native to the region and originate from wild animals. Currently, there is a paucity of information on the role of wild animals on the epidemiology of zoonotic tick-borne pathogens in South Africa. This systematic review focuses on the distribution of ticks and prevalence of tick-borne pathogens in different wild animals in South Africa to identify potential reservoir hosts and possible hotspots for emergence of novel tick-borne pathogens. Following several screening processes, 38 peer-reviewed studies published from 1970 to 2021, were deemed eligible. The studies reported on ticks collected from 63 host species of 21 host families, mostly Canidae, Felidae, Bovidae and Muridae. A total of 49 tick species of nine genera, i.e. Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, Margaropus, Nuttalliella, Rhipicentor and Rhipicephalus, were reported. Nine tick species, i.e. Amblyomma marmoreum, Am. hebraeum, Haemaphysalis elliptica, Hyalomma truncatum, I. rubicundus, Rh. appendiculatus, Rh. (B.) decoloratus, Rh. evertsi evertsi and Rh. simus were the most commonly reported. Pathogens of the genera Anaplasma, Babesia, Hepatozoon and Theileria were identified in the wild animals. This review provides more insight on the ecology of ticks and tick-borne pathogens of wild animals in South Africa and gives useful information for predicting their future spread. It also demonstrates that wild animals habour a diverse range of tick species. This level of diversity entails a similarly high potential for emergence of novel tick-borne pathogens. The review further indicates that wild animals in South Africa are sentinels of tick-borne protozoans of veterinary importance and some bacterial pathogens as most ticks they habour are known vectors of pathogens of domestic animals and humans. However, studies on potential tick-borne zoonoses are under-represented and should be included in future epidemiological surveys, especially in the light of climate change and other anthropogenic threats which might result in the emergence of novel tick-borne pathogens. Wild animals in South Africa harbor a wide range of tick species of veterinary and medical importance. Forty-nine tick species belonging to 9 genera were reported from 63 wild host species of 21 families. Majority of the ticks occur throughout all nine provinces of South Africa. Wildlife in South Africa are sentinels of tick-borne protozoans and some bacterial pathogens of veterinary importance. The review also emphasizes the host preference of the ticks and the pathogens they transmit.
Collapse
Affiliation(s)
- Maphuti B. Ledwaba
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- Corresponding author.
| | - Khumalo Nozipho
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
| | - Danisile Tembe
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
| | - Mamohale E. Chaisi
- Foundational Research and Services, South African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
3
|
Abstract
AbstractThe first fossil potentially assignable to the extant hard tick genus Haemaphysalis CL Koch (1844) (Ixodida: Ixodidae) is described from the Late Cretaceous (ca. 99 Ma) Burmese amber of Myanmar. Haemaphysalis (Alloceraea) cretacea sp. nov. is the oldest and only fossil representative of this genus; living members of which predominantly feed on mammals. Their typical hosts are known since at least the Jurassic and the discovery of a mid-Cretaceous parasite, which might have fed on mammals raises again the question of to what extent ticks are coupled to their (modern) host groups. An inferred Triassic split of Argasidae (soft ticks) into the bird-preferring Argasinae and mammal-preferring Ornithodorinae dates to about the time when dinosaurs (later including birds) and mammaliaforms as potential hosts were emerging. Ixodidae may have split into Prostriata and Metastriata shortly after the end-Permian mass extinction, an event which fundamentally altered the terrestrial vertebrate fauna. Prostriata (the genus Ixodes) prefer birds and mammals today, and some may have used groups like cynodonts in the Triassic. Basal metastriate ticks (e.g. Amblyomma) prefer reptiles, but derived metastriates (including Haemaphysalis) again prefer mammals. Here, we may be looking at a younger (Cretaceous?) shift associated with more recent mammalian radiations.
Collapse
|
4
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
5
|
Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA. Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea: Nuttalliellidae). Ticks Tick Borne Dis 2015; 6:450-62. [DOI: 10.1016/j.ttbdis.2015.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
|
6
|
Fagir DM, Horak IG, Ueckermann EA, Bennett NC, Lutermann H. Ectoparasite diversity in the eastern rock sengis (Elephantulus myurus): the effect of seasonality and host sex. AFRICAN ZOOLOGY 2015. [DOI: 10.1080/15627020.2015.1021173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Lutermann H, Fagir DM, Bennett NC. Complex interactions within the ectoparasite community of the eastern rock sengi (Elephantulus myurus). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:148-58. [PMID: 25830115 PMCID: PMC4356872 DOI: 10.1016/j.ijppaw.2015.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/24/2023]
Abstract
We monitored and manipulated the ectoparasite community of rock sengis over 3 years. We found a number of facilitating interactions between tick species. Inter-taxon interactions were mostly antagonistic. Experimental manipulation had long-term effects on the ectoparasite community.
Concomitant infection with more than one parasite species is the rule in nature. Since co-infecting parasites are exploiting the same host, interspecific interactions at the infracommunity level are likely. The nature of such interactions can be expected to affect the distribution of parasites within host populations. Intraspecific interactions within the infracommunity are not easily discernible from cross-sectional studies and the focus of most of these studies lies on relationships between endoparasitic micro- and macroparasites. In the current study of the ectoparasite community of wild eastern rock sengis (Elephantulus myurus) we experimentally reduced tick and flea infestations and monitored ectoparasite burdens over the course of three years. We found a number of within-taxon facilitating interactions between tick species that might be the result of decreasing immune responses with increasing tick burden. In contrast, inter-taxon relationships appeared to be dominated by antagonistic relationships likely to be linked to competition over feeding sites. Only one of the observed interspecific interactions was reciprocal. Our experimental manipulation revealed additional antagonistic relationships that cross-sectional studies would not have captured. In addition, we found substantial long-term changes in the sengi ectoparasite community as a result of our experimental manipulation suggesting carry-over effects of our treatment. This study is the first that evaluates interspecific interactions within the entire ectoparasite community exploiting a mammalian host in Africa and highlights the complexity of interspecific interactions within an ectoparasite community.
Collapse
Affiliation(s)
- Heike Lutermann
- Corresponding author. Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. Tel.: +27 12 420 4872; fax: +27 12 362 5242.
| | | | | |
Collapse
|
8
|
Barker SC, Walker AR, Campelo D. A list of the 70 species of Australian ticks; diagnostic guides to and species accounts of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas. Int J Parasitol 2014; 44:941-53. [PMID: 25236960 DOI: 10.1016/j.ijpara.2014.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/25/2022]
Abstract
Seventy species of ticks are known from Australia: 14 soft ticks (family Argasidae) and 56 hard ticks (family Ixodidae). Sixteen of the 70 ticks in Australia may feed on humans and domestic animals (Barker and Walker 2014). The other 54 species of ticks in Australia feed only on wild mammals, reptiles and birds. At least 12 of the species of ticks in Australian also occur in Papua New Guinea. We use an image-matching system much like the image-matching systems of field guides to birds and flowers to identify Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). Our species accounts have reviews of the literature on I. holocyclus (paralysis tick) from the first paper on the biology of an Australian tick by Bancroft (1884), on paralysis of dogs by I. holocyclus, to papers published recently, and of I. cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). We comment on four controversial questions in the evolutionary biology of ticks: (i) were labyrinthodont amphibians in Australia in the Devonian the first hosts of soft, hard and nuttalliellid ticks?; (ii) are the nuttalliellid ticks the sister-group to the hard ticks or the soft ticks?; (iii) is Nuttalliella namaqua the missing link between the soft and hard ticks?; and (iv) the evidence for a lineage of large bodied parasitiform mites (ticks plus the holothyrid mites plus the opiliocarid mites).
Collapse
Affiliation(s)
- Stephen C Barker
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Alan R Walker
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG Scotland, United Kingdom
| | - Dayana Campelo
- Department of Parasitology, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
9
|
Fagir DM, Ueckermann EA, Horak IG, Bennett NC, Lutermann H. The Namaqua rock mouse (Micaelamys namaquensis) as a potential reservoir and host of arthropod vectors of diseases of medical and veterinary importance in South Africa. Parasit Vectors 2014; 7:366. [PMID: 25127720 PMCID: PMC4141090 DOI: 10.1186/1756-3305-7-366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
Background The role of endemic murid rodents as hosts of arthropod vectors of diseases of medical and veterinary significance is well established in the northern hemisphere. In contrast, endemic murids are comparatively understudied as vector hosts in Africa, particularly in South Africa. Considering the great rodent diversity in South Africa, many of which may occur as human commensals, this is unwarranted. Methods In the current study we assessed the ectoparasite community of a widespread southern African endemic, the Namaqua rock mouse (Micaelamys namaquensis), that is known to carry Bartonella spp. and may attain pest status. We aimed to identify possible vectors of medical and/or veterinary importance which this species may harbour and explore the contributions of habitat type, season, host sex and body size on ectoparasite prevalence and abundance. Results Small mammal abundance was substantially lower in grasslands compared to rocky outcrops. Although the small mammal community comprised of different species in the two habitats, M. namaquensis was the most abundant species in both habitat types. From these 23 ectoparasite species from four taxa (fleas, ticks, mites and lice) were collected. However, only one flea (Xenopsylla brasiliensis) and one tick species (Haemaphysalis elliptica) have a high zoonotic potential and have been implicated as vectors for Yersinia pestis and Bartonella spp. and Rickettsia conorii, respectively. The disease status of the most commonly collected tick (Rhipicephalus distinctus) is currently unknown. Only flea burdens differed markedly between habitat types and increased with body size. With the exception of lice, all parasite taxa exhibited seasonal peaks in abundance during spring and summer. Conclusion M. namaquensis is the dominant small mammal species irrespective of habitat type. Despite the great ectoparasite diversity harboured by M. namaquensis, only a small number of these are known as vectors of diseases of medical and/or veterinary importance but occur at high prevalence and/or abundance. This raises concern regarding the potential of this host as an endemic reservoir for zoonotic diseases. Consequently, additional sampling throughout its distributional range and research addressing the role of M. namaquensis as a reservoir for zoonotic diseases in southern Africa is urgently needed.
Collapse
Affiliation(s)
| | | | | | | | - Heike Lutermann
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
10
|
Mans BJ, de Klerk DG, Pienaar R, Latif AA. The host preferences of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): a generalist approach to surviving multiple host-switches. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:233-240. [PMID: 24057095 DOI: 10.1007/s10493-013-9737-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Nuttalliella namaqua has been described as a "living fossil" and the closest extant species to the ancestral tick lineage. It was previously proposed that the Nuttalliella lineage parasitized reptile-like mammals in the Permian and had to switch hosts several times due to mass or host lineage extinctions. Extant hosts include girdled lizards and murid rodents. The current study extends knowledge on the extant host range of N. namaqua using gut meal analysis of field collected specimens. Nymphs and females can parasitize a variety of reptiles that includes skinks, geckos and girdled lizards. Blood-meal from a hyrax was also detected in a specimen suggesting that N. namaqua could parasitize a broader range of mammals than the previously suggested murid rodents. Rather than being host specific, N. namaqua is proposed to be a generalist and the ability to switch and parasitize multiple hosts allowed it to survive multiple mass and host lineage extinctions.
Collapse
Affiliation(s)
- Ben J Mans
- Parasites, Vectors and Vector-Borne Diseases, Agricultural Research Council, Onderstepoort Veterinary Institute, Onderstepoort, 0110, South Africa,
| | | | | | | |
Collapse
|
11
|
Latif AA, Putterill JF, de Klerk DG, Pienaar R, Mans BJ. Nuttalliella namaqua (Ixodoidea: Nuttalliellidae): first description of the male, immature stages and re-description of the female. PLoS One 2012; 7:e41651. [PMID: 22844508 PMCID: PMC3406016 DOI: 10.1371/journal.pone.0041651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Nuttalliella namaqua is the only species of the enigmatic third tick family. Females possess features of hard and soft ticks and have been designated as the "missing link" between the main tick families. Its position at the base of the tick tree suggests that some of the features unique to hard and soft ticks were present in the ancestral tick lineage. Larvae, nymphae and males have not been described to date and questions regarding their biological affinities to the main tick families remain unclear. The current study addressed these questions via the description of larvae, nymphae and males and resolved issues pertaining to female morphology. Field collected as well as laboratory-engorged females laid eggs and viable larvae subsequently hatched. The larvae possess morphological structures not present in subsequent stages: namely, a sclerotized scutum, pores on the dorsal surface of legs and a dentate anal plate. The last two characters are not present in ixodids and argasids. N. namaqua larvae and nymphae show a similar morphology to females: a unique hypostomal structure i.e., bluntly rounded apically in nymphae and females and ball-like in the larvae. A re-description of some structures in female N. namaqua has resolved differences in the original descriptions, namely that N. namaqua have 4 palpal segments as found in ixodids and argasids and posthypostomal setae. The male was discovered for the first time and described. Characteristic male features include: a pseudoscutum over most of the dorsum, an outgrowth on the chelicerae forming a unique rod-like structure similar to a spematodactyl in mites and medial extension of palpal segment 2 forming a large ventral crib for segment 4. All life stages possess some features found in hard and soft ticks and its status as the "missing link" between the tick families remains.
Collapse
Affiliation(s)
- Abdalla A Latif
- Parasites, Vectors and Vector-borne Diseases Programme, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.
| | | | | | | | | |
Collapse
|