1
|
Taklu M, Rajabi Islami H, Mousavi SA, Jourdehi AY. Nucleotide supplementation in the diet of Sterlet sturgeon (Acipenser ruthenus): Improved zootechnical performance, biochemical indices, and immune responses. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
2
|
Mycoplasma pneumoniae Infection Associated C3 Glomerulopathy Presenting as Severe Crescentic Glomerulonephritis. Case Rep Nephrol 2021; 2021:6295543. [PMID: 34616577 PMCID: PMC8490074 DOI: 10.1155/2021/6295543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
C3 glomerulopathy (C3GP) is a group of diseases caused by a deregulated complement system, which encompasses both dense deposit disease and C3 glomerulonephritis. Renal manifestations of C3GP are primarily of proliferative glomerulonephritis, and only a few case reports of crescentic glomerulonephritis (CGN) in association with C3GP are available. Here is a case of an adult South-Asian female, who was diagnosed as seropositive acute Mycoplasma pneumoniae infection, with associated systemic manifestations, including immune-type extravascular haemolysis and nephrotic range proteinuria. Subsequent renal biopsy revealed CGN with disrupted Bowman's capsules and necrotizing lesions. Immunofluorescence showed coarse granular mesangial C3 deposits with negative IgM, IgG, IgA, and C1q. The immunomorphological phenotype raised two possibilities including C3GP and infection-related glomerulonephritis (IRGN). Persistent proteinuria with no evidence of resolution even after 6 months of follow-up favoured C3GP over IRGN. The patient proceeded to end-stage renal failure requiring renal replacement despite aggressive immunosuppression. This case illustrates the rare association of CGN with C3GP induced by Mycoplasma pneumoniae infection, highlighting the importance of correct diagnosis as well as timely identification of triggering factors in CGN on patient outcome.
Collapse
|
3
|
Garam N, Cserhalmi M, Prohászka Z, Szilágyi Á, Veszeli N, Szabó E, Uzonyi B, Iliás A, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Rysava R, Reiterova J, Saraga M, Seeman T, Zieg J, Sládková E, Stajic N, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Józsi M, Csuka D. FHR-5 Serum Levels and CFHR5 Genetic Variations in Patients With Immune Complex-Mediated Membranoproliferative Glomerulonephritis and C3-Glomerulopathy. Front Immunol 2021; 12:720183. [PMID: 34566977 PMCID: PMC8461307 DOI: 10.3389/fimmu.2021.720183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Factor H-related protein 5 (FHR-5) is a member of the complement Factor H protein family. Due to the homology to Factor H, the main complement regulator of the alternative pathway, it may also be implicated in the pathomechanism of kidney diseases where Factor H and alternative pathway dysregulation play a role. Here, we report the first observational study on CFHR5 variations along with serum FHR-5 levels in immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G) patients together with the clinical, genetic, complement, and follow-up data. Methods A total of 120 patients with a histologically proven diagnosis of IC-MPGN/C3G were enrolled in the study. FHR-5 serum levels were measured in ELISA, the CFHR5 gene was analyzed by Sanger sequencing, and selected variants were studied as recombinant proteins in ELISA and surface plasmon resonance (SPR). Results Eight exonic CFHR5 variations in 14 patients (12.6%) were observed. Serum FHR-5 levels were lower in patients compared to controls. Low serum FHR-5 concentration at presentation associated with better renal survival during the follow-up period; furthermore, it showed clear association with signs of complement overactivation and clinically meaningful clusters. Conclusions Our observations raise the possibility that the FHR-5 protein plays a fine-tuning role in the pathogenesis of IC-MPGN/C3G.
Collapse
Affiliation(s)
- Nóra Garam
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Marcell Cserhalmi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Nóra Veszeli
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Edina Szabó
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Iliás
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz-Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Olomouc, Czechia
| | - Ágnes Haris
- Department of Nephrology, Péterfy Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria.,Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | | | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Krisztina Kóbor
- Fresenius Medical Care (FMC) Center of Dialysis, Miskolc, Hungary
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Ludmila Podracka
- Department of Pediatrics, Comenius University, Bratislava, Slovakia
| | - Michael Rudnicki
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Marijan Saraga
- Department of Pediatrics, University Hospital Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Pragu, Czechia
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Natasa Stajic
- Institute of Mother and Childhealth Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, Debrecen University, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, University Hospital Dubrava Zagreb, Zagreb, Croatia
| | - András Tislér
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, University Hospital and Faculty of Medicine, Ostrava, Czechia
| | - Galia Zlatanova
- University Children's Hospital, Medical University, Sofia, Bulgaria
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
4
|
Baker LW, Khan M, Cortese C, Aslam N. Fibrillary glomerulonephritis or complement 3 glomerulopathy: a rare case of diffuse necrotising crescentic glomerulonephritis with C3-dominant glomerular deposition and positive DNAJB9. BMJ Case Rep 2021; 14:e239868. [PMID: 33602773 PMCID: PMC7896581 DOI: 10.1136/bcr-2020-239868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 11/04/2022] Open
Abstract
Fibrillary glomerulonephritis (FGN) and complement 3 glomerulopathy (C3G) are rare forms of glomerulonephritis with distinct aetiologies. Both FGN and C3G can present with nephritic syndrome. FGN is associated with autoimmune disease, dysproteinaemia, malignancy and hepatitis C infection. C3G is caused by the unregulated activation of the alternative complement pathway. We present a rare case of diffuse necrotising crescentic glomerulonephritis with dominant C3 glomerular staining on immunofluorescence-consistent with C3G-but electron microscopy (EM) findings of randomly oriented fibrils with a mean diameter of 14 nm and positive immunohistochemistry for DNAJB9-suggestive of FGN. To the best of our knowledge, this is the first reported case of FGN to show dominant C3 glomerular deposits. This case report reaffirms the utility of EM in the evaluation of nephritic syndrome and highlights the value of DNAJB9-a novel biomarker with a sensitivity and specificity near 100% for FGN.
Collapse
Affiliation(s)
- Lyle Wesley Baker
- Division of Nephrology and Hypertension, Mayo Clinic Hospital Jacksonville, Jacksonville, Florida, USA
| | - Mahnoor Khan
- Division of Nephrology and Hypertension, Mayo Clinic Hospital Jacksonville, Jacksonville, Florida, USA
| | - Cherise Cortese
- Department of Pathology, Mayo Clinic Hospital Jacksonville, Jacksonville, Florida, USA
| | - Nabeel Aslam
- Division of Nephrology and Hypertension, Mayo Clinic Hospital Jacksonville, Jacksonville, Florida, USA
| |
Collapse
|
5
|
Hanna RM, Hou J, Hasnain H, Arman F, Selamet U, Wilson J, Olanrewaju S, Zuckerman JE, Barsoum M, Yabu JM, Kurtz I. Diverse Clinical Presentations of C3 Dominant Glomerulonephritis. Front Med (Lausanne) 2020; 7:293. [PMID: 32695788 PMCID: PMC7338606 DOI: 10.3389/fmed.2020.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
C3 dominant immunofluorescence staining is present in a subset of patients with idiopathic immune complex membranoproliferative glomerulonephritis (iMPGN). It is increasingly recognized that iMPGN may be complement driven, as are cases of "typical" C3 glomerulopathy (C3G). In both iMPGN and C3G, a frequent membranoproliferative pattern of glomerular injury may indicate common pathogenic mechanisms via complement activation and endothelial cell damage. Dysregulation of the alternative complement pathway and mutations in certain regulatory factors are highly implicated in C3 glomerulopathy (which encompasses C3 glomerulonephritis, dense deposit disease, and cases of C3 dominant MPGN). We report three cases that demonstrate that an initial biopsy diagnosis of iMPGN does not exclude complement alterations similar to the ones observed in patients with a diagnosis of C3G. The first patient is a 39-year-old woman with iMPGN and C3 dominant staining, with persistently low C3 levels throughout her course. The second case is a 22-year-old woman with elevated anti-factor H antibodies and C3 dominant iMPGN findings on biopsy. The third case is a 25-year-old woman with C3 dominant iMPGN, dense deposit disease, and a crescentic glomerulonephritis on biopsy. We present the varied phenotypic variations of C3 dominant MPGN and review clinical course, complement profiles, genetic testing, treatment course, and peri-transplantation plans. Testing for complement involvement in iMPGN is important given emerging treatment options and transplant planning.
Collapse
Affiliation(s)
- Ramy M Hanna
- Division of Nephrology, Department of Medicine, UCI School of Medicine, Irvine, CA, United States.,Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Huma Hasnain
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Farid Arman
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Umut Selamet
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - James Wilson
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Samuel Olanrewaju
- David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Marina Barsoum
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Julie M Yabu
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States
| |
Collapse
|
6
|
Perkins SJ. Genetic and Protein Structural Evaluation of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. Adv Chronic Kidney Dis 2020; 27:120-127.e4. [PMID: 32553244 DOI: 10.1053/j.ackd.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with loss of regulation of the alternative pathway of complement and its resulting overactivation. As rare diseases, genetic variants leading to aHUS and C3G were previously analysed in relatively low patient numbers. To improve this analysis, data were pooled from six centres. Totals of 610 rare variants for aHUS and 82 for C3G were presented in an interactive database for 13 genes. Using allele frequency comparisons with the Exome Aggregation Consortium as a reference genome, the patients with aHUS showed significantly more protein-altering ultrarare variants (allele frequency <0.01%) in five genes CFH, CFI, CD46, C3, and DGKE. In patients with C3G, the corresponding association was only found for C3 and CFH. Protein structure analyses of these five proteins showed distinct differences in the positioning of these variants in C3 and FH. For aHUS, variants were clustered at the C-terminus of FH and implicated changes in the binding of FH to host cell surfaces. For C3G, variants were clustered at the N-terminal C3b binding site of FH and implicated changes in the fluid-phase regulation of C3b. We discuss the utility of the Web database as a patient resource for clinicians.
Collapse
|
7
|
Ahmad SB, Bomback AS. C3 Glomerulopathy: Pathogenesis and Treatment. Adv Chronic Kidney Dis 2020; 27:104-110. [PMID: 32553242 DOI: 10.1053/j.ackd.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
Abstract
C3 glomerulopathy (C3G) is a rare set of kidney diseases with 2 patterns: C3 glomerulonephritis (C3GN) and dense deposit disease. Pathogenesis of both diseases is due to complement dysregulation in the alternative pathway. Acquired or genetic alterations of the regulatory proteins of the complement pathway result in C3G. Although the disease is characterized by low C3 levels in serum and C3-dominant staining by immunofluorescence on biopsy, other disease entities such as infection-related glomerulonephritis and masked monoclonal deposits can present similarly. Both the C3GN and dense deposit disease variants of C3G are progressive and recur in transplanted kidneys. Although no direct treatment is available, complement blockers are either available or in the clinical trial phase. This review will survey the pathogenesis of C3GN and current treatment options.
Collapse
|
8
|
Garam N, Prohászka Z, Szilágyi Á, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik-Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Romana Rysava, Reiterova J, Saraga M, Tomáš Seeman, Zieg J, Sládková E, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Csuka D. C4 nephritic factor in patients with immune-complex-mediated membranoproliferative glomerulonephritis and C3-glomerulopathy. Orphanet J Rare Dis 2019; 14:247. [PMID: 31703608 PMCID: PMC6839100 DOI: 10.1186/s13023-019-1237-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/22/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acquired or genetic abnormalities of the complement alternative pathway are the primary cause of C3glomerulopathy(C3G) but may occur in immune-complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) as well. Less is known about the presence and role of C4nephritic factor(C4NeF) which may stabilize the classical pathway C3-convertase. Our aim was to examine the presence of C4NeF and its connection with clinical features and with other pathogenic factors. RESULTS One hunfe IC-MPGN/C3G patients were enrolled in the study. C4NeF activity was determined by hemolytic assay utilizing sensitized sheep erythrocytes. Seventeen patients were positive for C4NeF with lower prevalence of renal impairment and lower C4d level, and higher C3 nephritic factor (C3NeF) prevalence at time of diagnosis compared to C4NeF negative patients. Patients positive for both C3NeF and C4NeF had the lowest C3 levels and highest terminal pathway activation. End-stage renal disease did not develop in any of the C4NeF positive patients during follow-up period. Positivity to other complement autoantibodies (anti-C1q, anti-C3) was also linked to the presence of nephritic factors. Unsupervised, data-driven cluster analysis identified a group of patients with high prevalence of multiple complement autoantibodies, including C4NeF. CONCLUSIONS In conclusion, C4NeF may be a possible cause of complement dysregulation in approximately 10-15% of IC-MPGN/C3G patients.
Collapse
Affiliation(s)
- Nóra Garam
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary.
| | - Ágnes Szilágyi
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Moravia, Czech Republic
| | - Ágnes Haris
- Department of Nephrology, Szent Margit Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria
- Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | | | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- FMC Center of Dialysis, Miskolc, Hungary
| | | | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hopital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik-Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Michael Rudnicki
- Dept. of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Dept. of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marijan Saraga
- Department of Pathology, University Hospital Split University of Split, School of Medicine, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Eva Sládková
- Department of Pediatrics, Charles University in Prague, Faculty of Medicine in Pilsen, Prague, Czech Republic
| | - Tamás Szabó
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - András Tislér
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Department of Pathology of Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, University Hospital and Faculty of Medicine Ostrava, Ostrava, Czech Republic
| | - Galia Zlatanova
- University Children's Hospital Medical University, Sofia, Bulgaria
| | - Dorottya Csuka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| |
Collapse
|
9
|
Bharati J, Tiewsoh K, Kumar A, Nada R, Rathi M, Gupta KL, Kohli HS, Jha V, Ramachandran R. Usefulness of mycophenolate mofetil in Indian patients with C3 glomerulopathy. Clin Kidney J 2019; 12:483-487. [PMID: 31384438 PMCID: PMC6671524 DOI: 10.1093/ckj/sfy127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background C3 glomerulopathy (C3G) is a heterogeneous disease caused by alternative complement pathway abnormalities without any standardized treatment. An immunosuppressive agent, mycophenolate mofetil (MMF), has been recently shown to be useful in treating C3G, mainly in studies from the west. We report the clinical outcome of 17 Indian C3G patients treated with MMF with or without steroids. Methods The clinical and histology details of the C3G patients treated with MMF for at least 6 months with a follow-up of at least 12 months were retrieved from the medical records of our center. Results The median serum creatinine and proteinuria at presentation were 0.8 mg/dL and 3.7 g/day, respectively, with the majority (88.2%) presenting as nephrotic syndrome. The mean dose of MMF was 1.65 (±0.56) g/day, and the median duration of MMF therapy was 18 months. Two-thirds (64%) of the patients responded to the treatment, with complete remission in 4 (23%) and partial remission in 7 (41%) (median time: 9 months). Three patients progressed to end-stage renal disease (ESRD) on follow-up. Of the three patients, one (33%) had an initial response in proteinuria to MMF but did not respond after a relapse and subsequently progressed to ESRD and two (67%) other patients were nonresponsive to MMF from the start of the therapy. Conclusion Despite a small sample size and lack of a control arm, this study describes the effectiveness of MMF in treating C3G patients from Asia and forms a basis for future randomized trials.
Collapse
Affiliation(s)
- Joyita Bharati
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karalanglin Tiewsoh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Kumar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishan Lal Gupta
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekananda Jha
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Abbas F, El Kossi M, Kim JJ, Shaheen IS, Sharma A, Halawa A. Complement-mediated renal diseases after kidney transplantation - current diagnostic and therapeutic options in de novo and recurrent diseases. World J Transplant 2018; 8:203-219. [PMID: 30370231 PMCID: PMC6201327 DOI: 10.5500/wjt.v8.i6.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023] Open
Abstract
For decades, kidney diseases related to inappropriate complement activity, such as atypical hemolytic uremic syndrome and C3 glomerulopathy (a subtype of membranoproliferative glomerulonephritis), have mostly been complicated by worsened prognoses and rapid progression to end-stage renal failure. Alternative complement pathway dysregulation, whether congenital or acquired, is well-recognized as the main driver of the disease process in these patients. The list of triggers include: surgery, infection, immunologic factors, pregnancy and medications. The advent of complement activation blockade, however, revolutionized the clinical course and outcome of these diseases, rendering transplantation a viable option for patients who were previously considered as non-transplantable cases. Several less-costly therapeutic lines and likely better efficacy and safety profiles are currently underway. In view of the challenging nature of diagnosing these diseases and the long-term cost implications, a multidisciplinary approach including the nephrologist, renal pathologist and the genetic laboratory is required to help improve overall care of these patients and draw the optimum therapeutic plan.
Collapse
Affiliation(s)
- Fedaey Abbas
- Nephrology Department, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Jin Kim
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ihab Sakr Shaheen
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Hospital for Children, Glasgow G51 4TF, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom
| |
Collapse
|
11
|
Osborne AJ, Breno M, Borsa NG, Bu F, Frémeaux-Bacchi V, Gale DP, van den Heuvel LP, Kavanagh D, Noris M, Pinto S, Rallapalli PM, Remuzzi G, Rodríguez de Cordoba S, Ruiz A, Smith RJH, Vieira-Martins P, Volokhina E, Wilson V, Goodship THJ, Perkins SJ. Statistical Validation of Rare Complement Variants Provides Insights into the Molecular Basis of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. THE JOURNAL OF IMMUNOLOGY 2018; 200:2464-2478. [PMID: 29500241 DOI: 10.4049/jimmunol.1701695] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with dysregulation and overactivation of the complement alternative pathway. Typically, gene analysis for aHUS and C3G is undertaken in small patient numbers, yet it is unclear which genes most frequently predispose to aHUS or C3G. Accordingly, we performed a six-center analysis of 610 rare genetic variants in 13 mostly complement genes (CFH, CFI, CD46, C3, CFB, CFHR1, CFHR3, CFHR4, CFHR5, CFP, PLG, DGKE, and THBD) from >3500 patients with aHUS and C3G. We report 371 novel rare variants (RVs) for aHUS and 82 for C3G. Our new interactive Database of Complement Gene Variants was used to extract allele frequency data for these 13 genes using the Exome Aggregation Consortium server as the reference genome. For aHUS, significantly more protein-altering rare variation was found in five genes CFH, CFI, CD46, C3, and DGKE than in the Exome Aggregation Consortium (allele frequency < 0.01%), thus correlating these with aHUS. For C3G, an association was only found for RVs in C3 and the N-terminal C3b-binding or C-terminal nonsurface-associated regions of CFH In conclusion, the RV analyses showed nonrandom distributions over the affected proteins, and different distributions were observed between aHUS and C3G that clarify their phenotypes.
Collapse
Affiliation(s)
- Amy J Osborne
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Breno
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Fengxiao Bu
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Medical Genetics Center, Southwest Hospital, Chongqing 400038, China
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015 Paris, France
| | - Daniel P Gale
- Centre for Nephrology, Royal Free Hospital, University College London, London NW3 2QG, United Kingdom
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.,Department of Pediatric Nephrology, Department of Growth and Regeneration, University Hospital Leuven, 3000 Leuven, Belgium
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, Newcastle upon Tyne NE1 4LP, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Marina Noris
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy
| | - Sheila Pinto
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Pavithra M Rallapalli
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Giuseppe Remuzzi
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, 20122 Milan, Italy; and
| | - Santiago Rodríguez de Cordoba
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Angela Ruiz
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Paula Vieira-Martins
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015 Paris, France
| | - Elena Volokhina
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie Wilson
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
12
|
Welte T, Arnold F, Kappes J, Seidl M, Häffner K, Bergmann C, Walz G, Neumann-Haefelin E. Treating C3 glomerulopathy with eculizumab. BMC Nephrol 2018; 19:7. [PMID: 29329521 PMCID: PMC5767001 DOI: 10.1186/s12882-017-0802-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background C3 glomerulopathy (C3G) is a rare, but severe glomerular disease with grim prognosis. The complex pathogenesis is just unfolding, and involves acquired as well as inherited dysregulation of the alternative pathway of the complement cascade. Currently, there is no established therapy. Treatment with the C5 complement inhibitor eculizumab may be a therapeutic option. However, due to rarity of the disease, parameters predicting treatment response remain largely unknown. Methods Seven patients with C3G (five with C3 glomerulonephritis and two with dense deposit disease) were treated with eculizumab. Subjects underwent biopsy before enrollment. The histopathology, clinical data, and response to eculizumab treatment were analyzed. The key parameters to determine outcome were changes of serum creatinine and urinary protein over time. Results After treatment with eculizumab, four subjects showed significantly improved or stable renal function and urinary protein. A positive response occurred between 2 weeks and 6 months after therapy initiation. One subject (with allograft recurrent C3 glomerulonephritis) initially showed a positive response, but relapsed when eculizumab was discontinued, and did not respond after re-initiation of treatment. Two subjects showed impaired renal function and increasing urinary protein despite therapy with eculizumab. Conclusions Eculizumab may be a therapeutic option for a subset of C3G patients. The response to eculizumab is heterogeneous, and early as well as continuous treatment may be necessary to prevent disease progression. These findings emphasize the need for studies identifying genetic and functional complement abnormalities that may help to guide eculizumab treatment and predict response. Electronic supplementary material The online version of this article (10.1186/s12882-017-0802-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Frederic Arnold
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Julia Kappes
- Department of Pneumology, Medical Center-University of Freiburg, Germany, Killianstrasse 4, 79106, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, Medical Center-University of Freiburg, Germany, Breisacher Strasse 115A, 79106, Freiburg, Germany
| | - Karsten Häffner
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Germany, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany, Konrad-Adenauer-Strasse 17, 55218, Ingelheim, Germany
| | - Gerd Walz
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Palamuthusingam D, Mantha M, Oliver K, Bavishi K, Dheda S. Mini review: A unique case of crescentic C3 glomerulonephritis. Nephrology (Carlton) 2017; 22:261-264. [PMID: 28205354 DOI: 10.1111/nep.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
Kidney involvement is an under-recognized complication of non-Hodgkin lymphomas. They occur in a variety of mechanisms and differ widely in their clinical presentation. We take this opportunity to report a case of a 65 year-old man who developed a rapidly progressive glomerulonephritis within days after completing his first cycle of R-CHOP (Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisolone) chemotherapy for newly diagnosed mantle cell lymphoma. He was odematous, hypertensive, oliguric with nephrotic range proteinuria and an active urine sediment. A renal biopsy showed a crescentic C3 glomerulonephritis (C3GN) with no evidence endocapillary or mesangial hypercellularity. He was promptly treated with immunosuppression and dialysis, with resumption of his chemotherapy. Genetic testing on complement proteins revealed a homozygous deletion spanning the CFHR1 and CFHR3 genes. Crescentic C3GN is a rare form of kidney injury, and this is the first known case of lymphoma-associated kidney involvement manifesting as C3GN. This article explores the possible mechanism of disease and reviews the literature of lymphoma-related kidney disease.
Collapse
Affiliation(s)
| | - Murty Mantha
- Department of Renal Medicine, Cairns Hospital, Cairns, Queensland, Australia
| | - Kimberley Oliver
- Department of Anatomical Pathology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ketan Bavishi
- Department of Haematology, Cairns Hospital, Cairns, Queensland, Australia
| | - Shyam Dheda
- Department of Renal Medicine, Cairns Hospital, Cairns, Queensland, Australia
| |
Collapse
|
14
|
Abstract
C3 glomerulopathy (C3G) is a recently identified disease entity caused by dysregulation of the alternative complement pathway, and dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) are its components. Because laboratory detection of complement dysregulation is still uncommon in practice, "dominant C3 deposition by two orders greater than that of immunoglobulins in the glomeruli by immunofluorescence", as stated in the consensus report, defines C3G. However, this morphological definition possibly includes the cases with glomerular diseases of different mechanisms such as post-infectious glomerulonephritis. In addition, the differential diagnosis between DDD and C3GN is often difficult because the distinction between these two diseases is based solely on electron microscopic features. Recent molecular and genetic advances provide information to characterize C3G. Some C3G cases are found with genetic abnormalities in complement regulatory factors, but majority of cases seem to be associated with acquired factors that dysregulate the alternative complement pathway. Because clinical courses and prognoses among glomerular diseases with dominant C3 deposition differ, further understanding the background mechanism, particularly complement dysregulation in C3G, is needed. This may resolve current dilemmas in practice and shed light on novel targeted therapies to remedy the dysregulated alternative complement pathway in C3G.
Collapse
|