1
|
Wang X, Yan J, Ni X, Hu S, Zhang M, Ying Y. Phloretin targets SIRT1 to alleviate oxidative stress, apoptosis, and inflammation in deep venous thrombosis. Toxicol Res 2024; 40:83-96. [PMID: 38223667 PMCID: PMC10786814 DOI: 10.1007/s43188-023-00207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 01/16/2024] Open
Abstract
Deep vein thrombosis (DVT) is a type of venous thromboembolism posing a serious threat to health on a global scale. Phloretin is a potential natural product that has a variety of pharmacological activities. Besides, some Chinese medicines reported that deacetylase sirtuin (SIRT)1 treats DVT by anti-inflammatory and anti-platelet production. However, the specific binding targets and binding modes have not been elaborated. The present study was to investigate whether phloretin attenuates DVT in model rats and oxidized low‑density lipoprotein (ox‑LDL) induced human umbilical vein endothelial cells (HUVECs), and to explore its potential target. The results revealed that the treatment of phloretin, especially pretreatment of it elevated tissue plasminogen activator (t-PA), superoxide dismutase (SOD), prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT), and cell apoptosis proteins whereas it suppressed plasminogen activator inhibitor (PAI), malondialdehyde (MDA), reactive oxygen species (ROS), fibrinogen (FIB) in DVT rats and cells. Concurrently, phloretin inhibited collagen type I alpha 1 (COL1A1), transforming growth factor-β1 (TGF-β1), and inflammatory factors while it enhanced nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase 1 (HO-1). In addition, 20 μM phloretin exerted powerful effective protection in HUVECs with DVT model. Later, the surface plasmon resonance (SPR) confirmed that phloretin has a high affinity with SIRT1. Furthermore, siRNA-SIRT1 transfection abolished the protective effect of phloretin against ox‑LDL‑induced DVT in HUVECs, indicating that phloretin targets SIRT1 to alleviate oxidative stress, cell apoptosis, and inflammation in DVT rats and HUVECs. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00207-y.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Jin Yan
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Xiaolong Ni
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Sipin Hu
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Mingwan Zhang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| |
Collapse
|
2
|
Djorgbenoo R, Wang W, Zhu Y, Sang S. Detoxification of the Lipid Peroxidation Aldehyde, 4-Hydroxynonenal, by Apple Phloretin In Vitro and in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37418694 DOI: 10.1021/acs.jafc.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
4-Hydroxy-2-nonenal (4-HNE) is a secondary cytotoxic product generated from lipid peroxidation of polyunsaturated fatty acids (PUFAs). The accumulation of 4-HNE can covalently modify biomolecules, such as DNA and proteins, leading to various pathological conditions. Apple phloretin has been shown to be able to trap 4-HNE in vitro, but the trapping mechanisms of 4-HNE by phloretin are not fully understood. Moreover, whether the in vitro trapping efficacy of phloretin toward 4-HNE could be transferred into in vivo environments has never been investigated. In the present study, we observed the formation of 4-HNE conjugates of phloretin increased as phloretin decreased during the in vitro incubation. We then purified and characterized three mono-4-HNE-conjugates of phloretin using NMR and LC-MS/MS techniques. We thereafter demonstrated that apple phloretin could scavenge in vivo 4-HNE via the formation of at least three mono-4-HNE-conjugates of phloretin in a dose-dependent manner in mice after oral administration of three doses of phloretin (25, 100, and 400 mg/kg). The findings from this study pave the way to understanding how dihydrochalcones could act as effective scavengers of 4-HNE by working as sacrificial nucleophiles in vivo, thereby preventing or reducing the risk of 4-HNE-associated chronic diseases.
Collapse
Affiliation(s)
- Richmond Djorgbenoo
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
3
|
Sujeeth NK, Aravinth R, Thandeeswaran M, Angayarkanni J, Rajasekar A, Mythili R, Gnanadesigan M. Toxicity analysis and biomarker response of Quinalphos Organophosphate Insecticide (QOI) on eco-friendly exotic Eudrilus eugeniae earthworm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:274. [PMID: 36607436 DOI: 10.1007/s10661-022-10834-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
An ever-increasing use of pesticides in agricultural fields has led to a catastrophic decline in crop quality and, ultimately soil fertility. To control various pests, quinalphos is commonly used in India's tea plantations. This study aims to investigate the effects of the Quinalphos organophosphate insecticide on the non-target beneficial organism Eudrilus eugeniae earthworms and the biomarkers that respond to its effects. Earthworm species, especially E. eugeniae, remains as the most trustworthy and well-suited model organism for conducting a wide variety of environmental studies. The median lethal concentration (LC50) was identified as 3.561 µg cm-2 (contact filter paper) and 1.054 mg kg-2 (artificial soil toxicity). The 5% and 10% of LC50 value 3.561 µg cm-2 was exposed to earthworm to analyze the sublethal effects at pre-clitellum, clitellum, and post-clitellum segments. Specific enzymatic activities of neurotransmitter enzyme acetylcholinesterase; antioxidant enzymes such as lipid peroxidase, superoxide dismutase, and catalase; and detoxification enzymes including glutathione S transferase, reduced glutathione, carboxylesterase, and Cytochrome P450 were analyzed. Exposure of E. eugeniae earthworm to subacute exposures of pesticides caused significant alterations in these stress markers in a concentration-dependent manner. Morphological abnormalities like bulginess, coiling, and bleeding were observed after exposure of the insecticide treatments. Histological cellular disintegration, a reduced NRRT time, and an inhibited proteolytic zone were also identified in pesticide-exposed earthworms. Studies demonstrate that the organophosphate insecticide quinalphos causes acute toxicity in E. eugeniae; hence, it is suggested that non-target eco-friendly E. eugeniae earthworms may be at risk if exposed to the excessive concentrations of quinalphos organophosphate insecticide in soil.
Collapse
Affiliation(s)
- Nachimuthu Krishnan Sujeeth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Ramasamy Aravinth
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Murugesan Thandeeswaran
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Jayaraman Angayarkanni
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Aruliah Rajasekar
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India
| | - R Mythili
- PG & Research, Department of Biotechnology, Mahendra Arts & Science College, Kallipatti, 637501, Namakkal, Tamilnadu, India
| | - Murugesan Gnanadesigan
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
| |
Collapse
|
4
|
Pu Y, Hu S, Chen Y, Zhang Q, Xia C, Deng H, Wang Y, Hu Q. Thymoquinone loaded calcium alginate and polyvinyl alcohol carrier inhibits the 7,12-dimethylbenz[a]anthracene-induced hamster oral cancer via the down-regulation of PI3K/AKT/mTOR signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:339-351. [PMID: 33068063 DOI: 10.1002/tox.23040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Oral cancer is a multifactorial cancer that affects millions of peoples worldwide. The current exploration aimed to evaluate the mechanisms that thymoquinone nanoencapsulated carrier and its effects on 7,12-Dimethylbenz[a]anthracene (DMBA) stimulated hamster buccal pouch cancer in Syrian hamster model. Nanocarrier was characterized by SEM, TEM, FTIR analysis. The incidence of tumor, and biochemicals makers was studied through standard methods. The mRNA expression level of inflammatory markers NF-κBp50, NF-κBp65, and PI3K/AKT/mTOR markers in the buccal tissues of control and experimental animals were investigated through RT-PCR analysis. In thymoquinone (TQ) loaded calcium alginate and polyvinyl alcohol carrier (TQ/Ca-alg-PVA) no squamous cell carcinogenesis developed and others moderate dysplasia revealed differentiated form of hyperplasia and keratosis. In biochemical analyses with DMBA + TQ/Ca-alg-PVA (20 mg/kg bw) orally administered hamsters showed restored the antioxidants, detoxification, xenobiotic metabolising enzymes in DMBA induced plasma and oral tissues of hamsters. Further, mRNA expression level of NF-κBp50/p65 and PI3K/AKT/mTOR were upregulated in the DMBA alone painted hamster. In contrast, these expressions were down regulated in orally TQ/Ca-alg-PVA treated experimental animals. This ability more eligible to deregulate the inflammatory and PI3K/AKT/mTOR signaling pathway that proved it suppresses anti-invasion/metastasis activity during hamster buccal pouch carcinogenesis. From this study, we recommended that TQ/Ca-alg-PVA has documented as effective chemopreventive agents, in further many molecular machineries need to study.
Collapse
Affiliation(s)
- Yumei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shiqi Hu
- Department of Oral Pathology, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yongfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chengwan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Han Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Mariadoss AVA, Vinyagam R, Rajamanickam V, Sankaran V, Venkatesan S, David E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. Mini Rev Med Chem 2019; 19:1060-1067. [PMID: 30864525 DOI: 10.2174/1389557519666190311154425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Over the past two decades, many researchers have concluded that a diet rich in polyphenolic compounds plays an important therapeutic role in reducing the risk of cancer, cardiovascular disease, inflammation, diabetes, and other degenerative diseases. Polyphenolic compounds have been reported to be involved in neutralization of reactive oxygen species and charged radicals, and have anticarcinogenic effects, hepatoprotective effects, low-glycaemic response, and other benefits. The benefits of fruits and vegetables may be partly attributable to polyphenolic compounds, which have antioxidant and free radical scavenging properties. Fruits such as apples contain a variety of phytochemicals, including (+)-catechin and (-)-epicatechin, phlorizin, phloretin quercetin, cyanidin-3-Ogalactoside, chlorogenic acid, and p-coumaric acid, all of which are strong antioxidants. Phloretin, a natural phenolic compound, is a dihydrochalcone, which is present in the apple. It exhibits a wide variety of activities such as antioxidative, anti-inflammatory, anti-microbial, anti-allergic, anticarcinogenic, anti-thrombotic, and hepatoprotective, besides being involved in the activation of apoptotic associated gene expression and signal transduction in molecular pathways. Despite a multitude of clinical studies, new efforts are needed in clinical research to determine the complete therapeutic potential of phloretin.
Collapse
Affiliation(s)
- Arokia V A Mariadoss
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ramachandran Vinyagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vijayalakshmi Sankaran
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Sathish Venkatesan
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| |
Collapse
|
6
|
Vijayalakshmi S, Mariadoss AVA, Ramachandran V, Shalini V, Agilan B, Sangeetha CC, Balu P, Kotakadi VS, Karthikkumar V, Ernest D. Polydatin Encapsulated Poly [Lactic-co-glycolic acid] Nanoformulation Counteract the 7,12-Dimethylbenz[a] Anthracene Mediated Experimental Carcinogenesis through the Inhibition of Cell Proliferation. Antioxidants (Basel) 2019; 8:E375. [PMID: 31491872 PMCID: PMC6770361 DOI: 10.3390/antiox8090375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
In the present study, the authors have attempted to fabricate Polydatin encapsulated Poly [lactic-co-glycolic acid] (POL-PLGA-NPs) to counteract 7,12-dimethyl benzyl anthracene (DMBA) promoted buccal pouch carcinogenesis in experimental animals. The bio-formulated POL-PLGA-NPs were characterized by dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) pattern analysis, and transmission electron microscope (TEM). In addition, the nano-chemopreventive potential of POL-PLGA-NPs was assessed by scrutinizing the neoplastic incidence and analyzing the status of lipid peroxidation, antioxidants, phase I, phase II detoxification status, and histopathological changes and in DMBA-treated animals. In golden Syrian hamsters, oral squamous cell carcinoma (OSCC) was generated by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. After 100% tumor formation was observed, high tumor volume, tumor burden, and altered levels of biochemical status were observed in the DMBA-painted hamsters. Intra-gastric administration of varying concentration of POL-PLGA-NPs (7.5, 15, and 30 mg/kg b.wt) to DMBA-treated hamsters assumedly prevents oncological incidences and restores the status of the biochemical markers. It also significantly enhances the apoptotic associated and inhibits the cancer cell proliferative markers expression (p53, Bax, Bcl-2, cleaved caspase 3, cyclin-D1). The present study reveals that POL-PLGA-NPs is a penitential candidate for nano-chemopreventive, anti-lipid peroxidative, and antioxidant potential, and also has a modulating effect on the phase I and Phase II detoxification system, which is associated with reduced cell proliferation and induced apoptosis in experimental oral carcinogenesis.
Collapse
Affiliation(s)
- Sankaran Vijayalakshmi
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India
| | | | - Vinayagam Ramachandran
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India
| | - Vijayakumar Shalini
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India
| | - Balupillai Agilan
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India
| | - Casimeer C Sangeetha
- Department of Physics, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andra Pradesh, India
| | - Periyasamy Balu
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India
| | | | - Venkatachalam Karthikkumar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain 17666, UAE.
| | - David Ernest
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore 632 115, Tamilnadu, India.
| |
Collapse
|
7
|
Mariadoss AVA, Ramachandran V, Shalini V, Agilan B, Franklin JH, Sanjay K, Alaa YG, Tawfiq MAA, Ernest D. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 2019; 135:103609. [PMID: 31247255 DOI: 10.1016/j.micpath.2019.103609] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
This article reports the utilization of Malus domestica for the synthesis of silver nanoparticles (AgNPs) with cytotoxic activity against the Michigan Cancer Foundation-7 (MCF-7) cell line as well as their antibacterial and radical scavenging potential. The biosynthesized AgNPs were confirmed using various analytical characterization techniques. The cytotoxic effect of Malus domestica-AgNPs (M.d-AgNPs) was studied by MTT assay and scavenging efficacy was assessed by DPPH, nitric oxide radical and phosphomolybdate assays. Furthermore, green synthesized nanoparticles were evaluated for their antibacterial activity against multidrug resistant-clinical isolates. M.d-AgNPs were observed to be almost spherical in shape with an average diameter from 50 to 107.3 nm as assessed by TEM and DLS. M.d-AgNPs revealed the dose-dependent antioxidant activity and antimicrobial activity against multidrug-resistant bacterial strain viz. Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Also, in vitro studies revealed dose-dependent cytotoxic effects of M.d-AgNPs treated MCF-7 cell line. The data strongly suggest that M.d-AgNPs had a potential antioxidant, antimicrobial and cytotoxicity activity.
Collapse
Affiliation(s)
| | - Vinayagam Ramachandran
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, Tamil Nadu, India
| | - Vijayakumar Shalini
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, Tamil Nadu, India
| | - Balupillai Agilan
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, Tamil Nadu, India
| | - Jebaraj Herbert Franklin
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu, 632002, India
| | - Kumar Sanjay
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu, 632002, India
| | - Y Ghidan Alaa
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - M Al-Antary Tawfiq
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - David Ernest
- Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, Tamil Nadu, India.
| |
Collapse
|
8
|
Mariadoss AVA, Vinayagam R, Senthilkumar V, Paulpandi M, Murugan K, Xu B, K.M. G, Kotakadi VS, David E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int J Biol Macromol 2019; 130:997-1008. [DOI: 10.1016/j.ijbiomac.2019.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
9
|
Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem Biol Interact 2019; 308:11-19. [PMID: 31071336 DOI: 10.1016/j.cbi.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022]
Abstract
The main aim of this study was to investigate the effects of phloretin loaded chitosan nanoparticles (PhCsNPs) on 7,12-dimethylbenz[a]anthracene (DMBA) induced experimental cancer in hamsters. Oral squamous cell carcinoma (OSCC) was induced in male golden Syrian hamsters by painting with 0.5% DMBA three times a week for 14 weeks. Varying concentration of PhCsNPs (5, 10, and 20 mg/kg b.wt.) was orally administered on alternative days to evaluate the optimum dose. The experiment design was terminated at the end of the 14th week. The development of OSCC was confirmed by histopathological and biochemical analysis (lipid peroxidation, antioxidant profile, and detoxification enzymes) in plasma, erythrocyte, buccal, and liver tissues. Significant increases in oxidation and lipid peroxidation were noticed in DMBA-painted hamsters. Oral administration of PhCsNPs in various doses on alternate days reversed the deleterious effects induced by DMBA. In addition, immunoblot analyses of PhCsNPs treatment enhanced the release of Bcl-2 associated X protein (Bax), cytochrome c, caspase-3, 9 and suppressed the B-cell lymphoma 2 (Bcl-2) expression, which the use of PhCsNPs for mitochondrial-mediated apoptosis. These findings suggest biofabricated PhCsNPs may act as a potent antioxidant and anti-carcinogenic in DMBA induced oral cancer in experimental animals.
Collapse
|
10
|
Choi BY. Biochemical Basis of Anti-Cancer-Effects of Phloretin-A Natural Dihydrochalcone. Molecules 2019; 24:molecules24020278. [PMID: 30642127 PMCID: PMC6359539 DOI: 10.3390/molecules24020278] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Apple is a rich source of bioactive phytochemicals that help improve health by preventing and/or curing many disease processes, including cancer. One of the apple polyphenols is phloretin [2′,4′,6′-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone], which has been widely investigated for its antioxidant, anti-inflammatory and anti-cancer activities in a wide array of preclinical studies. The efficacy of phloretin in suppressing xenograft tumor growth in athymic nude mice implanted with a variety of human cancer cells, and the ability of the compound to interfere with cancer cells signaling, have made it a promising candidate for anti-cancer drug development. Mechanistically, phloretin has been reported to arrest the growth of tumor cells by blocking cyclins and cyclin-dependent kinases and induce apoptosis by activating mitochondria-mediated cell death. The blockade of the glycolytic pathway via downregulation of GLUT2 mRNA and proteins, and the inhibition of tumor cells migration, also corroborates the anti-cancer effects of phloretin. This review sheds light on the molecular targets of phloretin as a potential anti-cancer and anti-inflammatory natural agent.
Collapse
Affiliation(s)
- Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, Korea.
| |
Collapse
|
11
|
Selvasundaram R, Manoharan S, Buddhan R, Neelakandan M, Murali Naidu R. Chemopreventive potential of esculetin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Mol Cell Biochem 2018; 448:145-153. [PMID: 29435870 DOI: 10.1007/s11010-018-3321-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Abstract
7,12-Dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch carcinogenesis is widely preferred to assess the tumor-inhibiting efficacy of the medicinal plants or their constituents. The present study explores the tumor-inhibiting potential of esculetin by utilizing the status of lipid peroxidation by products (thiobarbituric acid reactive substances), antioxidants (vitamin E, reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase), and phase I and phase II detoxification agents as biochemical end points and by using histopathological studies as well in DMBA-induced hamster buccal pouch carcinogenesis. Oral tumors developed in the buccal pouch were subjected to histopathological studies, and were confirmed as oral squamous cell carcinoma. Hamsters treated with DMBA alone showed an abnormal pattern of lipid peroxidation, antioxidants, and detoxification agents as compared to control hamsters. The status of the above-mentioned biochemical markers and histopathological abnormalities were found to be reversed in DMBA + esculetin-treated hamsters. The result of the present study thus indicates the tumor preventive potential of esculetin in DMBA-induced oral carcinogenesis.
Collapse
Affiliation(s)
- Renganathan Selvasundaram
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India
| | - Shanmugam Manoharan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India.
| | - Rajamanickam Buddhan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India
| | - Mani Neelakandan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, 608002, India
| | - Radhakrishnan Murali Naidu
- Department of Oral & Maxillofacial Pathology, Rajah Muthiah Dental College & Hospital, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
12
|
Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Mol Cell Biochem 2017; 440:11-22. [PMID: 28801714 DOI: 10.1007/s11010-017-3151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/05/2017] [Indexed: 01/01/2023]
Abstract
Over the decades, the survival rates for oral cancer have not improved despite development in novel diagnostic and therapeutic strategies. Therefore, the present study is aimed at investigating the chemopreventive potential of parthenolide in DMBA-induced hamster buccal pouch carcinogenesis. The hamsters were divided into 4 groups (n = 6/group). Group I was treated as control. Groups II and III were painted with a solution of 0.5% DMBA three times per week for 14 weeks on the left buccal pouches. In addition, group III were orally administrated with parthenolide 2 mg/kg b.w on days alternate to the DMBA application. Group IV received only parthenolide. At the end of 14th week all hamsters were sacrificed. Buccal tissues from all hamsters were evaluated for histopathology. Biochemical studies were carried out using plasma, liver, and buccal mucosa of control and experimental hamsters. Gene and protein expression studies of apoptotic markers p53, Bcl-2, and Bax were performed. The results showed 100% tumor formation and marked alterations in histopathology, status of detoxification enzymes, lipid peroxidation, and antioxidant profile in group II hamsters. Oral administration of parthenolide completely prevented tumor formation and significantly reduced the severity of histopathological changes in group III hamsters. The status of detoxification enzymes, lipid peroxidation, and antioxidants were significantly restored in parthenolide treated group compared to group II hamsters. The apoptotic gene p53 and antiapoptotic gene Bcl-2 were significantly down regulated; whereas, pro-apoptotic gene Bax was up regulated in group III hamsters compared to group II. The results of the present study suggest that parthenolide have potent chemopreventive, antioxidant, and apoptotic effect in DMBA-induced oral carcinogenesis.
Collapse
|
13
|
Pawłowska-Góral K, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Orchel J, Glinka M, Gawron S. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14989-14996. [PMID: 27080405 PMCID: PMC4956710 DOI: 10.1007/s11356-016-6653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.
Collapse
Affiliation(s)
- Katarzyna Pawłowska-Góral
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Food and Nutrition, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Joanna Orchel
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Marek Glinka
- Institute of Electrical Drives and Machines KOMEL, 188 Rozdzienskiego Street, 40-203, Katowice, Poland
| | - Stanisław Gawron
- Institute of Electrical Drives and Machines KOMEL, 188 Rozdzienskiego Street, 40-203, Katowice, Poland
| |
Collapse
|
14
|
|