1
|
Kim OH, Kim J, Kim Y, Lee S, Lee BH, Kim BJ, Park HY, Park MH. Exploring novel MYH7 gene variants using in silico analyses in Korean patients with cardiomyopathy. BMC Med Genomics 2024; 17:225. [PMID: 39237976 PMCID: PMC11378590 DOI: 10.1186/s12920-024-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Pathogenic variants of MYH7, which encodes the beta-myosin heavy chain protein, are major causes of dilated and hypertrophic cardiomyopathy. METHODS In this study, we used whole-genome sequencing data to identify MYH7 variants in 397 patients with various cardiomyopathy subtypes who were participating in the National Project of Bio Big Data pilot study in Korea. We also performed in silico analyses to predict the pathogenicity of the novel variants, comparing them to known pathogenic missense variants. RESULTS We identified 27 MYH7 variants in 41 unrelated patients with cardiomyopathy, consisting of 20 previously known pathogenic/likely pathogenic variants, 2 variants of uncertain significance, and 5 novel variants. Notably, the pathogenic variants predominantly clustered within the myosin motor domain of MYH7. We confirmed that the novel identified variants could be pathogenic, as indicated by high prediction scores in the in silico analyses, including SIFT, Mutation Assessor, PROVEAN, PolyPhen-2, CADD, REVEL, MetaLR, MetaRNN, and MetaSVM. Furthermore, we assessed their damaging effects on protein dynamics and stability using DynaMut2 and Missense3D tools. CONCLUSIONS Overall, our study identified the distribution of MYH7 variants among patients with cardiomyopathy in Korea, offering new insights for improved diagnosis by enriching the data on the pathogenicity of novel variants using in silico tools and evaluating the function and structural stability of the MYH7 protein.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Jihyun Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Youngjun Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Soyoung Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang, 14068, Republic of Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicines, Seoul, 05505, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Hyun-Young Park
- National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Mi-Hyun Park
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, 28159, Republic of Korea.
| |
Collapse
|
2
|
Latchupatula L, Benayon M, Mansoor M, Luu J. Myosin Heavy Chain 7 (MYH7) Variant Associated Cardiovascular Disease: An Unusual Case of Heart Failure in a Young Male. Cureus 2024; 16:e61252. [PMID: 38813076 PMCID: PMC11135834 DOI: 10.7759/cureus.61252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
A 37-year-old male with type two diabetes presented to the hospital with new-onset heart failure and renal dysfunction. His left ventricular (LV) ejection fraction was less than 10%. Transthoracic echocardiography and cardiovascular magnetic resonance (CMR) imaging also revealed severe bicuspid aortic valve stenosis, dilated cardiomyopathy with LV hypertrophy, prominent LV trabeculations, and features suggestive of mild myocarditis with active inflammation. While myocarditis was suspected on CMR imaging, his mild degree of myocardial involvement did not explain the entirety of his clinical presentation, degree of LV dysfunction, or other structural abnormalities. An extensive work-up for his LV dysfunction was unremarkable for ischemic, metabolic, infiltrative, infectious, toxic, oncologic, connective tissue, and autoimmune etiologies. Genetic testing was positive for a myosin heavy chain 7 (MYH7) variant, which was deemed likely to be a unifying etiology underlying his presentation. The MYH7 sarcomere gene allows beta-myosin expression in heart ventricles, with variants associated with hypertrophic and dilated cardiomyopathies, congenital heart diseases, myocarditis, and excessive trabeculation (formerly known as left ventricular noncompaction). This case highlights the diverse array of cardiac pathologies that can present with MYH7 gene variants and reviews an extensive work-up for this unusual presentation of heart failure in a young patient.
Collapse
Affiliation(s)
| | - Myles Benayon
- Internal Medicine, McMaster University, Hamilton, CAN
| | | | - Judy Luu
- Cardiology, McGill University, Montreal, CAN
| |
Collapse
|
3
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Koshy L, Ganapathi S, Jeemon P, Madhuma M, Vysakh Y, Lakshmikanth L, Harikrishnan S. Sarcomeric gene variants among Indians with hypertrophic cardiomyopathy: A scoping review. Indian J Med Res 2023; 158:119-135. [PMID: 37787257 PMCID: PMC10645028 DOI: 10.4103/ijmr.ijmr_3567_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 10/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease that frequently causes sudden cardiac death (SCD) among young adults. Several pathogenic mutations in genes encoding the cardiac sarcomere have been identified as diagnostic factors for HCM and proposed as prognostic markers for SCD. The objective of this review was to determine the scope of available literature on the variants encoding sarcomere proteins associated with SCD reported among Indian patients with HCM. The eligibility criteria for the scoping review included full text articles that reported the results of genetic screening for sarcomeric gene mutations in HCM patients of Indian south Asian ancestry. We systematically reviewed studies from the databases of Medline, Scopus, Web of Science core collection and Google Scholar. The electronic search strategy included a combination of generic terms related to genetics, disease and population. The protocol of the study was registered with Open Science Framework (https://osf.io/53gde/). A total of 19 articles were identified that reported pathogenic or likely pathogenic (P/LP) variants within MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes, that included 16 singletons, one de novo and one digenic mutation (MYH7/ TPM1) associated with SCD among Indian patients. Evidence from functional studies and familial segregation implied a plausible mechanistic role of these P/LP variants in HCM pathology. This scoping review has compiled all the P/LP variants reported to-date among Indian patients and summarized their association with SCD. Single homozygous, de novo and digenic mutations were observed to be associated with severe phenotypes compared to single heterozygous mutations. The abstracted genetic information was updated with reference sequence ID (rsIDs) and compiled into freely accessible HCMvar database, available at https://hcmvar.heartfailure.org.in/. This can be used as a population specific genetic database for reference by clinicians and researchers involved in the identification of diagnostic and prognostic markers for HCM.
Collapse
Affiliation(s)
- Linda Koshy
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sanjay Ganapathi
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Panniyammakal Jeemon
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - M. Madhuma
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Y. Vysakh
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - L.R. Lakshmikanth
- Centre for Advance Research & Excellence in Heart Failure, Thiruvananthapuram, Kerala, India
| | - Sivadasanpillai Harikrishnan
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Lehman SJ, Meller A, Solieva SO, Lotthammer JM, Greenberg L, Langer SJ, Greenberg MJ, Tardiff JC, Bowman GR, Leinwand L. Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547580. [PMID: 37461648 PMCID: PMC10349964 DOI: 10.1101/2023.07.03.547580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in in vitro assays. Both HCM-I467V and LVNC-I467T S1 mutations exhibited similar mechanochemical function, including unchanged ATPase and enhanced actin velocity but had opposing effects on the super-relaxed (SRX) state of myosin. HCM-I467V S1 showed a small reduction in the SRX state, shifting myosin to a more actin-available state that may lead to the "gain-of-function" phenotype commonly described in HCM. In contrast, LVNC-I467T significantly increased the population of myosin in the ultra-slow SRX state. Interestingly, molecular dynamics simulations reveal that I467T allosterically disrupts interactions between ADP and the nucleotide-binding pocket, which may result in an increased ADP release rate. This predicted change in ADP release rate may define the enhanced actin velocity measured in LVNC-I467T, but also describe the uncoupled mechanochemical function for this mutation where the enhanced ADP release rate may be sufficient to offset the increased SRX population of myosin. These contrasting molecular effects may lead to contractile dysregulation that initiates LVNC-associated signaling pathways that progress the phenotype. Together, analysis of these mutations provides evidence that phenotypic complexity originates at the molecular level and is critical to understanding disease progression and developing therapies.
Collapse
Affiliation(s)
- Sarah J Lehman
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Artur Meller
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahlo O Solieva
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Jeffrey M Lotthammer
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Lina Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Stephen J Langer
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Michael J Greenberg
- Washington University in St. Louis, Department of Biochemistry and Molecular Biophysics, St. Louis, MO, USA
| | - Jil C Tardiff
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, USA
| | - Gregory R Bowman
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - Leslie Leinwand
- University of Colorado, Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| |
Collapse
|
6
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Sarohi V, Srivastava S, Basak T. A Comprehensive Outlook on Dilated Cardiomyopathy (DCM): State-Of-The-Art Developments with Special Emphasis on OMICS-Based Approaches. J Cardiovasc Dev Dis 2022; 9:jcdd9060174. [PMID: 35735803 PMCID: PMC9225617 DOI: 10.3390/jcdd9060174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) remains an enigmatic cardiovascular disease (CVD) condition characterized by contractile dysfunction of the myocardium due to dilation of the ventricles. DCM is one of the major forms of CVD contributing to heart failure. Dilation of the left or both ventricles with systolic dysfunction, not explained by known causes, is a hallmark of DCM. Progression of DCM leads to heart failure. Genetic and various other factors greatly contribute to the development of DCM, but the etiology has still remained elusive in a large number of cases. A significant number of studies have been carried out to identify the genetic causes of DCM. These candidate-gene studies revealed that mutations in the genes of the fibrous, cytoskeletal, and sarcomeric proteins of cardiomyocytes result in the development of DCM. However, a significant proportion of DCM patients are idiopathic in nature. In this review, we holistically described the symptoms, causes (in adults and newborns), genetic basis, and mechanistic progression of DCM. Further, we also summarized the state-of-the-art diagnosis, available biomarkers, treatments, and ongoing clinical trials of potential drug regimens. DCM-mediated heart failure is on the rise worldwide including in India. The discovery of biomarkers with a better prognostic value is the need of the hour for better management of DCM-mediated heart failure patients. With the advent of next-generation omics-based technologies, it is now possible to probe systems-level alterations in DCM patients pertaining to the identification of novel proteomic and lipidomic biomarkers. Here, we also highlight the onset of a systems-level study in Indian DCM patients by applying state-of-the-art mass-spectrometry-based “clinical proteomics” and “clinical lipidomics”.
Collapse
Affiliation(s)
- Vivek Sarohi
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
| | - Shriya Srivastava
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
| | - Trayambak Basak
- Indian Institute of Technology (IIT)-Mandi, School of Basic Sciences (SBS), Mandi 175075, HP, India; (V.S.); (S.S.)
- BioX Centre, Indian Institute of Technology (IIT)-Mandi, Mandi 175075, HP, India
- Correspondence: ; Tel.: +91-1905-267826
| |
Collapse
|
8
|
Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:129-146. [PMID: 34273561 PMCID: PMC9510876 DOI: 10.1016/j.gpb.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy. To identify novel cardiomyopathy-associated splicing factors, RNA-seq and tissue-enrichment analyses were performed, which identified up-regulated expression of Sam68-Like mammalian protein 2 (SLM2) in the left ventricle of dilated cardiomyopathy (DCM) patients. In the human heart, SLM2 binds to important transcripts of sarcomere constituents, such as those encoding myosin light chain 2 (MYL2), troponin I3 (TNNI3), troponin T2 (TNNT2), tropomyosin 1/2 (TPM1/2), and titin (TTN). Mechanistically, SLM2 mediates intron retention, prevents exon exclusion, and thereby mediates alternative splicing of the mRNA regions encoding the variable proline-, glutamate-, valine-, and lysine-rich (PEVK) domain and another part of the I-band region of titin. In summary, SLM2 is a novel cardiac splicing regulator with essential functions for maintaining cardiomyocyte integrity by binding to and processing the mRNAs of essential cardiac constituents such as titin.
Collapse
Affiliation(s)
- Jes-Niels Boeckel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | | | - Marion Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen 32545, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Nicole Eger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Laura Schoppe
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Diana M Bordalo
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Alan Lai
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Jan Haas
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Philipp Drewe-Boss
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Benjamin Meder
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Stanford Genome Technology Center, Department of Genetics, Stanford Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Gacita AM, Fullenkamp DE, Ohiri J, Pottinger T, Puckelwartz MJ, Nobrega MA, McNally EM. Genetic Variation in Enhancers Modifies Cardiomyopathy Gene Expression and Progression. Circulation 2021; 143:1302-1316. [PMID: 33478249 PMCID: PMC8009836 DOI: 10.1161/circulationaha.120.050432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inherited cardiomyopathy associates with a range of phenotypes, mediated by genetic and nongenetic factors. Noninherited cardiomyopathy also displays varying progression and outcomes. Expression of cardiomyopathy genes is under the regulatory control of promoters and enhancers, and human genetic variation in promoters and enhancers may contribute to this variability. METHODS We superimposed epigenomic profiling from hearts and cardiomyocytes, including promoter-capture chromatin conformation information, to identify enhancers for 2 cardiomyopathy genes, MYH7 and LMNA. Enhancer function was validated in human cardiomyocytes derived from induced pluripotent stem cells. We also conducted a genome-wide search to ascertain genomic variation in enhancers positioned to alter cardiac expression and correlated one of these variants to cardiomyopathy progression using biobank data. RESULTS Multiple enhancers were identified and validated for LMNA and MYH7, including a key enhancer that regulates the switch from MYH6 expression to MYH7 expression. Deletion of this enhancer resulted in a dose-dependent increase in MYH6 and faster contractile rate in engineered heart tissues. We searched for genomic variation in enhancer sequences across the genome, with a focus on nucleotide changes that create or interrupt transcription factor binding sites. The sequence variant, rs875908, disrupts a T-Box Transcription Factor 5 binding motif and maps to an enhancer region 2 kilobases from the transcriptional start site of MYH7. Gene editing to remove the enhancer that harbors this variant markedly reduced MYH7 expression in human cardiomyocytes. Using biobank-derived data, rs875908 associated with longitudinal echocardiographic features of cardiomyopathy. CONCLUSIONS Enhancers regulate cardiomyopathy gene expression, and genomic variation within these enhancer regions associates with cardiomyopathic progression over time. This integrated approach identified noncoding modifiers of cardiomyopathy and is applicable to other cardiac genes.
Collapse
Affiliation(s)
- Anthony M. Gacita
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Dominic E. Fullenkamp
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Joyce Ohiri
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Tess Pottinger
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
10
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
11
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
12
|
Kraker J, Viswanathan SK, Knöll R, Sadayappan S. Recent Advances in the Molecular Genetics of Familial Hypertrophic Cardiomyopathy in South Asian Descendants. Front Physiol 2016; 7:499. [PMID: 27840609 PMCID: PMC5083855 DOI: 10.3389/fphys.2016.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
The South Asian population, numbered at 1.8 billion, is estimated to comprise around 20% of the global population and 1% of the American population, and has one of the highest rates of cardiovascular disease. While South Asians show increased classical risk factors for developing heart failure, the role of population-specific genetic risk factors has not yet been examined for this group. Hypertrophic cardiomyopathy (HCM) is one of the major cardiac genetic disorders among South Asians, leading to contractile dysfunction, heart failure, and sudden cardiac death. This disease displays autosomal dominant inheritance, and it is associated with a large number of variants in both sarcomeric and non-sarcomeric proteins. The South Asians, a population with large ethnic diversity, potentially carries region-specific polymorphisms. There is high variability in disease penetrance and phenotypic expression of variants associated with HCM. Thus, extensive studies are required to decipher pathogenicity and the physiological mechanisms of these variants, as well as the contribution of modifier genes and environmental factors to disease phenotypes. Conducting genotype-phenotype correlation studies will lead to improved understanding of HCM and, consequently, improved treatment options for this high-risk population. The objective of this review is to report the history of cardiovascular disease and HCM in South Asians, present previously published pathogenic variants, and introduce current efforts to study HCM using induced pluripotent stem cell-derived cardiomyocytes, next-generation sequencing, and gene editing technologies. The authors ultimately hope that this review will stimulate further research, drive novel discoveries, and contribute to the development of personalized medicine with the aim of expanding therapeutic strategies for HCM.
Collapse
Affiliation(s)
- Jessica Kraker
- Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Shiv Kumar Viswanathan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Ralph Knöll
- AstraZeneca R&D Mölndal, Innovative Medicines and Early Development, Cardiovascular and Metabolic Diseases iMedMölndal, Sweden; Integrated Cardio Metabolic Centre, Karolinska Institutet, Myocardial Genetics, Karolinska University Hospital in HuddingeHuddinge, Sweden
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
13
|
Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials 2012; 33:5541-51. [PMID: 22575829 DOI: 10.1016/j.biomaterials.2012.04.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid (BMSC/SH) patches were implanted into myocardial infarction (MI) rat hearts to investigate the efficacies of them on enhancing left ventricular (LV) remodeling and cardiac repair. 45 rats were divided into four groups: Sham, MI (MI hearts, induced by a cryo-injury technique), SH and BMSC/SH (MI hearts with implantations of SH and BMSC/SH patches, respectively). After eight weeks of post-implantation, the patches for the SH and BMSC/SH groups were intact and well adhered on the MI zones with no and minor immunological responses, respectively, examined by a CD68 marker, while severe inflammation on the zones was observed for the MI group. The SH group showed the efficacy of cardiac repair on MI zones. Moreover, BMSC/SH group significantly improved the wall thickness of LV, assessed by echocardiography, and had high viability of delivery BMSC, largely reduced apoptosis, significantly promoted neo-vascularization and stimulated the secretions of various paracrine factors such as VEGF, examined by real-time PCR, in MI zones compared with those of the SH and MI groups. In conclusion, the therapeutic efficacies of using BMSC/SH patches for repairing MI hearts were demonstrated by showing the advantages of both bioactive SH patches and BMSC-based therapy.
Collapse
|
14
|
Bashyam MD, Purushotham G, Chaudhary AK, Rao KM, Acharya V, Mohammad TA, Nagarajaram HA, Hariram V, Narasimhan C. A low prevalence of MYH7/MYBPC3 mutations among familial hypertrophic cardiomyopathy patients in India. Mol Cell Biochem 2011; 360:373-82. [PMID: 21959974 DOI: 10.1007/s11010-011-1077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/16/2011] [Indexed: 02/05/2023]
Abstract
Familial Hypertrophic Cardiomyopathy (FHC) is an autosomal dominant disorder affecting the cardiac muscle and exhibits varied clinical symptoms because of genetic heterogeneity. Several disease causing genes have been identified and most code for sarcomere proteins. In the current study, we have carried out clinical and molecular analysis of FHC patients from India. FHC was detected using echocardiography and by analysis of clinical symptoms and family history. Disease causing mutations in the β-cardiac myosin heavy chain (MYH7) and Myosin binding protein C3 (MYBPC3) genes were identified using Polymerase Chain Reaction-Deoxyribose Nucleic Acid (PCR-DNA) sequencing. Of the 55 patient samples screened, mutations were detected in only nineteen in the two genes; MYBPC3 mutations were identified in 12 patients while MYH7 mutations were identified in five, two patients exhibited double heterozygosity. All four MYH7 mutations were missense mutations, whereas only 3/9 MYPBC3 mutations were missense mutations. Four novel mutations in MYBPC3 viz. c.456delC, c.2128G>A (p.E710K), c.3641G>A (p.W1214X), and c.3656T>C (p.L1219P) and one in MYH7 viz. c.965C>T (p.S322F) were identified. A majority of missense mutations affected conserved amino acid residues and were predicted to alter the structure of the corresponding mutant proteins. The study has revealed a greater frequency of occurrence of MYBPC3 mutations when compared to MYH7 mutations.
Collapse
Affiliation(s)
- Murali D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
[Advances in the molecular pathogenesis of hypertrophic cardiomyopathy]. YI CHUAN = HEREDITAS 2011; 33:549-57. [PMID: 21684859 DOI: 10.3724/sp.j.1005.2011.00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypertrophic Cardiomyopathy (HCM) is a primary cardiac disorder characterized by asymmetric thickening of the septum and left ventricular wall. HCM affects 1 in 500 individuals in the general population, and it is the most common cause of sudden death in the young and athletes. The clinic phenotype of HCM is highly variable with respect to age at onset, degree of symptoms, and risk of sudden death. HCM is usually inherited as a Mendelian autosomal dominant trait. To date, over 900 mutations have been reported in HCM, which were mainly located in 13 genes encoding cardiac sarcomere protein, e.g., MYH7, MYBPC3, and TnT. In addition, more and more mitochondrial DNA mutations were reported to be associated with the pathogenesis of HCM. Based on the description of the clinical phenotype and morphological characteristics, this review focuses on the research in the molecular pathogenic mechanism of HCM and its recent advances.
Collapse
|